c@250: #include c@250: #include c@250: #include c@250: #include c@250: c@250: #include "mfcc.h" c@250: #include "SBFFT.h" c@250: #include "windows.h" c@250: c@250: /* c@250: * c@250: * Initialise the MFCC structure and return a pointer to a c@250: * feature vector c@250: * c@250: */ c@250: c@250: extern mfcc_t* init_mfcc(int fftSize, int nceps , int samplingRate, int WANT_C0){ c@250: c@250: int i,j; c@250: /* Calculate at startup */ c@250: double *freqs, *lower, *center, *upper, *triangleHeight, *fftFreqs; c@250: c@250: /* Allocate space for the structure */ c@250: mfcc_t* mfcc_p = (mfcc_t*)malloc(sizeof(mfcc_t)); c@250: c@250: mfcc_p->lowestFrequency = 66.6666666; c@250: mfcc_p->linearFilters = 13; c@250: mfcc_p->linearSpacing = 66.66666666; c@250: mfcc_p->logFilters = 27; c@250: mfcc_p->logSpacing = 1.0711703; c@250: c@250: /* FFT and analysis window sizes */ c@250: mfcc_p->fftSize = fftSize; c@250: c@250: mfcc_p->totalFilters = mfcc_p->linearFilters + mfcc_p->logFilters; c@250: c@250: mfcc_p->samplingRate = samplingRate; c@250: c@250: /* The number of cepstral componenents */ c@250: mfcc_p->nceps = nceps; c@250: c@250: /* Set if user want C0 */ c@250: mfcc_p->WANT_C0 = WANT_C0; c@250: c@250: /* Allocate space for feature vector */ c@250: if (mfcc_p->WANT_C0==1) { c@250: mfcc_p->ceps = (double*)calloc(nceps+1,sizeof(double)); c@250: } else { c@250: mfcc_p->ceps = (double*)calloc(nceps,sizeof(double)); c@250: } c@250: c@250: /* Allocate space for local vectors */ c@250: mfcc_p->mfccDCTMatrix = (double**)calloc(mfcc_p->nceps+1, sizeof(double*)); c@250: for (i=0;inceps+1; i++) { c@250: mfcc_p->mfccDCTMatrix[i]= (double*)calloc(mfcc_p->totalFilters, sizeof(double)); c@250: } c@250: c@250: mfcc_p->mfccFilterWeights = (double**)calloc(mfcc_p->totalFilters, sizeof(double*)); c@250: for (i=0;itotalFilters; i++) { c@250: mfcc_p->mfccFilterWeights[i] = (double*)calloc(mfcc_p->fftSize, sizeof(double)); c@250: } c@250: c@250: freqs = (double*)calloc(mfcc_p->totalFilters+2,sizeof(double)); c@250: c@250: lower = (double*)calloc(mfcc_p->totalFilters,sizeof(double)); c@250: center = (double*)calloc(mfcc_p->totalFilters,sizeof(double)); c@250: upper = (double*)calloc(mfcc_p->totalFilters,sizeof(double)); c@250: c@250: triangleHeight = (double*)calloc(mfcc_p->totalFilters,sizeof(double)); c@250: fftFreqs = (double*)calloc(mfcc_p->fftSize,sizeof(double)); c@250: c@250: for (i=0;ilinearFilters;i++) { c@250: freqs[i] = mfcc_p->lowestFrequency + ((double)i) * mfcc_p->linearSpacing; c@250: } c@250: c@250: for (i=mfcc_p->linearFilters; itotalFilters+2; i++) { c@250: freqs[i] = freqs[mfcc_p->linearFilters-1] * c@250: pow(mfcc_p->logSpacing, (double)(i-mfcc_p->linearFilters+1)); c@250: } c@250: c@250: /* Define lower, center and upper */ c@250: memcpy(lower, freqs,mfcc_p->totalFilters*sizeof(double)); c@250: memcpy(center, &freqs[1],mfcc_p->totalFilters*sizeof(double)); c@250: memcpy(upper, &freqs[2],mfcc_p->totalFilters*sizeof(double)); c@250: c@250: for (i=0;itotalFilters;i++){ c@250: triangleHeight[i] = 2./(upper[i]-lower[i]); c@250: } c@250: c@250: for (i=0;ifftSize;i++){ c@250: fftFreqs[i] = ((double) i / ((double) mfcc_p->fftSize ) * c@250: (double) mfcc_p->samplingRate); c@250: } c@250: c@250: /* Build now the mccFilterWeight matrix */ c@250: for (i=0;itotalFilters;i++){ c@250: c@250: for (j=0;jfftSize;j++) { c@250: c@250: if ((fftFreqs[j] > lower[i]) && (fftFreqs[j] <= center[i])) { c@250: c@250: mfcc_p->mfccFilterWeights[i][j] = triangleHeight[i] * c@250: (fftFreqs[j]-lower[i]) / (center[i]-lower[i]); c@250: c@250: } c@250: else c@250: { c@250: c@250: mfcc_p->mfccFilterWeights[i][j] = 0.0; c@250: c@250: } c@250: c@250: if ((fftFreqs[j]>center[i]) && (fftFreqs[j]mfccFilterWeights[i][j] = mfcc_p->mfccFilterWeights[i][j] + triangleHeight[i] * (upper[i]-fftFreqs[j]) c@250: / (upper[i]-center[i]); c@250: } c@250: else c@250: { c@250: c@250: mfcc_p->mfccFilterWeights[i][j] = mfcc_p->mfccFilterWeights[i][j] + 0.0; c@250: c@250: } c@250: } c@250: c@250: } c@250: c@250: #ifndef PI c@250: #define PI 3.14159265358979323846264338327950288 c@250: #endif c@250: c@250: /* c@250: * c@250: * We calculate now mfccDCT matrix c@250: * NB: +1 because of the DC component c@250: * c@250: */ c@250: c@250: for (i=0; itotalFilters; j++) { c@250: mfcc_p->mfccDCTMatrix[i][j] = (1./sqrt((double) mfcc_p->totalFilters / 2.)) c@250: * cos((double) i * ((double) j + 0.5) / (double) mfcc_p->totalFilters * PI); c@250: } c@250: } c@250: c@250: for (j=0;jtotalFilters;j++){ c@250: mfcc_p->mfccDCTMatrix[0][j] = (sqrt(2.)/2.) * mfcc_p->mfccDCTMatrix[0][j]; c@250: } c@250: c@250: /* The analysis window */ c@250: mfcc_p->window = hamming(mfcc_p->fftSize); c@250: c@250: /* Allocate memory for the FFT */ c@250: mfcc_p->imagIn = (double*)calloc(mfcc_p->fftSize,sizeof(double)); c@250: mfcc_p->realOut = (double*)calloc(mfcc_p->fftSize,sizeof(double)); c@250: mfcc_p->imagOut = (double*)calloc(mfcc_p->fftSize,sizeof(double)); c@250: c@250: free(freqs); c@250: free(lower); c@250: free(center); c@250: free(upper); c@250: free(triangleHeight); c@250: free(fftFreqs); c@250: c@250: return mfcc_p; c@250: c@250: } c@250: c@250: /* c@250: * c@250: * Free the memory that has been allocated c@250: * c@250: */ c@250: c@250: extern void close_mfcc(mfcc_t* mfcc_p) { c@250: c@250: int i; c@250: c@250: /* Free the structure */ c@250: for (i=0;inceps+1;i++) { c@250: free(mfcc_p->mfccDCTMatrix[i]); c@250: } c@250: free(mfcc_p->mfccDCTMatrix); c@250: c@250: for (i=0;itotalFilters; i++) { c@250: free(mfcc_p->mfccFilterWeights[i]); c@250: } c@250: free(mfcc_p->mfccFilterWeights); c@250: c@250: /* Free the feature vector */ c@250: free(mfcc_p->ceps); c@250: c@250: /* The analysis window */ c@250: free(mfcc_p->window); c@250: c@250: /* Free the FFT */ c@250: free(mfcc_p->imagIn); c@250: free(mfcc_p->realOut); c@250: free(mfcc_p->imagOut); c@250: c@250: /* Free the structure itself */ c@250: free(mfcc_p); c@250: mfcc_p = NULL; c@250: c@250: } c@250: c@250: /* c@250: * c@250: * Extract the MFCC on the input frame c@250: * c@250: */ c@250: c@250: c@250: // looks like we have to have length = mfcc_p->fftSize ?????? c@250: c@250: extern int do_mfcc(mfcc_t* mfcc_p, double* frame, int length){ c@250: c@250: int i,j; c@250: c@250: double *fftMag; c@250: double *earMag; c@250: c@250: double *inputData; c@250: c@250: double tmp; c@250: c@250: earMag = (double*)calloc(mfcc_p->totalFilters, sizeof(double)); c@250: inputData = (double*)calloc(mfcc_p->fftSize, sizeof(double)); c@250: c@250: /* Zero-pad if needed */ c@250: memcpy(inputData, frame, length*sizeof(double)); c@250: c@250: /* Calculate the fft on the input frame */ c@250: fft_process(mfcc_p->fftSize, 0, inputData, mfcc_p->imagIn, mfcc_p->realOut, mfcc_p->imagOut); c@250: c@250: /* Get the magnitude */ c@250: fftMag = abs_fft(mfcc_p->realOut, mfcc_p->imagOut, mfcc_p->fftSize); c@250: c@250: /* Multiply by mfccFilterWeights */ c@250: for (i=0;itotalFilters;i++) { c@250: tmp = 0.; c@250: for(j=0;jfftSize/2; j++) { c@250: tmp = tmp + (mfcc_p->mfccFilterWeights[i][j]*fftMag[j]); c@250: } c@250: if (tmp>0) c@250: earMag[i] = log10(tmp); c@250: else c@250: earMag[i] = 0.0; c@250: } c@250: c@250: /* c@250: * c@250: * Calculate now the ceptral coefficients c@250: * with or without the DC component c@250: * c@250: */ c@250: c@250: if (mfcc_p->WANT_C0==1) { c@250: c@250: for (i=0;inceps+1;i++) { c@250: tmp = 0.; c@250: for (j=0;jtotalFilters;j++){ c@250: tmp = tmp + mfcc_p->mfccDCTMatrix[i][j]*earMag[j]; c@250: } c@250: /* Send to workspace */ c@250: mfcc_p->ceps[i] = tmp; c@250: } c@250: c@250: } c@250: else c@250: { c@250: for (i=1;inceps+1;i++) { c@250: tmp = 0.; c@250: for (j=0;jtotalFilters;j++){ c@250: tmp = tmp + mfcc_p->mfccDCTMatrix[i][j]*earMag[j]; c@250: } c@250: /* Send to workspace */ c@250: mfcc_p->ceps[i-1] = tmp; c@250: } c@250: } c@250: c@250: free(fftMag); c@250: free(earMag); c@250: free(inputData); c@250: c@250: return mfcc_p->nceps; c@250: c@250: } c@250: c@250: c@250: c@250: