Chris@118: /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ Chris@110: Chris@110: #include "dsp/transforms/FFT.h" Chris@110: Chris@110: #define BOOST_TEST_DYN_LINK Chris@110: #define BOOST_TEST_MAIN Chris@110: Chris@110: #include Chris@110: Chris@129: #include Chris@129: Chris@110: BOOST_AUTO_TEST_SUITE(TestFFT) Chris@110: Chris@110: #define COMPARE_CONST(a, n) \ Chris@110: for (int cmp_i = 0; cmp_i < (int)(sizeof(a)/sizeof(a[0])); ++cmp_i) { \ Chris@110: BOOST_CHECK_SMALL(a[cmp_i] - n, 1e-14); \ Chris@110: } Chris@110: Chris@110: #define COMPARE_ARRAY(a, b) \ Chris@110: for (int cmp_i = 0; cmp_i < (int)(sizeof(a)/sizeof(a[0])); ++cmp_i) { \ Chris@110: BOOST_CHECK_SMALL(a[cmp_i] - b[cmp_i], 1e-14); \ Chris@110: } Chris@110: Chris@114: //!!! need at least one test with complex time-domain signal Chris@110: Chris@110: BOOST_AUTO_TEST_CASE(forwardArrayBounds) Chris@110: { Chris@170: // initialise bins to something recognisable, so we can tell if Chris@170: // they haven't been written; and allocate the inputs on the heap Chris@170: // so that, if running under valgrind, we get warnings about Chris@170: // overruns Chris@170: double *in = new double[4]; Chris@170: in[0] = 1; Chris@170: in[1] = 1; Chris@170: in[2] = -1; Chris@170: in[3] = -1; Chris@110: double re[] = { 999, 999, 999, 999, 999, 999 }; Chris@110: double im[] = { 999, 999, 999, 999, 999, 999 }; Chris@110: FFT(4).process(false, in, 0, re+1, im+1); Chris@110: // And check we haven't overrun the arrays Chris@110: BOOST_CHECK_EQUAL(re[0], 999.0); Chris@110: BOOST_CHECK_EQUAL(im[0], 999.0); Chris@110: BOOST_CHECK_EQUAL(re[5], 999.0); Chris@110: BOOST_CHECK_EQUAL(im[5], 999.0); Chris@170: delete[] in; Chris@110: } Chris@110: Chris@114: BOOST_AUTO_TEST_CASE(r_forwardArrayBounds) Chris@114: { Chris@170: // initialise bins to something recognisable, so we can tell if Chris@170: // they haven't been written; and allocate the inputs on the heap Chris@170: // so that, if running under valgrind, we get warnings about Chris@170: // overruns Chris@170: double *in = new double[4]; Chris@170: in[0] = 1; Chris@170: in[1] = 1; Chris@170: in[2] = -1; Chris@170: in[3] = -1; Chris@114: double re[] = { 999, 999, 999, 999, 999, 999 }; Chris@114: double im[] = { 999, 999, 999, 999, 999, 999 }; Chris@114: FFTReal(4).forward(in, re+1, im+1); Chris@114: // And check we haven't overrun the arrays Chris@114: BOOST_CHECK_EQUAL(re[0], 999.0); Chris@114: BOOST_CHECK_EQUAL(im[0], 999.0); Chris@114: BOOST_CHECK_EQUAL(re[5], 999.0); Chris@114: BOOST_CHECK_EQUAL(im[5], 999.0); Chris@170: delete[] in; Chris@114: } Chris@114: Chris@110: BOOST_AUTO_TEST_CASE(inverseArrayBounds) Chris@110: { Chris@170: // initialise bins to something recognisable, so we can tell if Chris@170: // they haven't been written; and allocate the inputs on the heap Chris@170: // so that, if running under valgrind, we get warnings about Chris@170: // overruns Chris@170: double *re = new double[4]; Chris@170: double *im = new double[4]; Chris@170: re[0] = 0; Chris@170: re[1] = 1; Chris@170: re[2] = 0; Chris@170: re[3] = 1; Chris@170: im[0] = 0; Chris@170: im[1] = -2; Chris@170: im[2] = 0; Chris@170: im[3] = 2; Chris@110: double outre[] = { 999, 999, 999, 999, 999, 999 }; Chris@110: double outim[] = { 999, 999, 999, 999, 999, 999 }; Chris@114: FFT(4).process(true, re, im, outre+1, outim+1); Chris@110: // And check we haven't overrun the arrays Chris@110: BOOST_CHECK_EQUAL(outre[0], 999.0); Chris@110: BOOST_CHECK_EQUAL(outim[0], 999.0); Chris@110: BOOST_CHECK_EQUAL(outre[5], 999.0); Chris@110: BOOST_CHECK_EQUAL(outim[5], 999.0); Chris@170: delete[] re; Chris@170: delete[] im; Chris@110: } Chris@110: Chris@114: BOOST_AUTO_TEST_CASE(r_inverseArrayBounds) Chris@114: { Chris@170: // initialise bins to something recognisable, so we can tell if Chris@170: // they haven't been written; and allocate the inputs on the heap Chris@170: // so that, if running under valgrind, we get warnings about Chris@170: // overruns Chris@170: double *re = new double[3]; Chris@170: double *im = new double[3]; Chris@170: re[0] = 0; Chris@170: re[1] = 1; Chris@170: re[2] = 0; Chris@170: im[0] = 0; Chris@170: im[1] = -2; Chris@170: im[2] = 0; Chris@114: double outre[] = { 999, 999, 999, 999, 999, 999 }; Chris@114: FFTReal(4).inverse(re, im, outre+1); Chris@114: // And check we haven't overrun the arrays Chris@114: BOOST_CHECK_EQUAL(outre[0], 999.0); Chris@114: BOOST_CHECK_EQUAL(outre[5], 999.0); Chris@170: delete[] re; Chris@170: delete[] im; Chris@114: } Chris@114: Chris@114: BOOST_AUTO_TEST_CASE(dc) Chris@114: { Chris@114: // DC-only signal. The DC bin is purely real Chris@114: double in[] = { 1, 1, 1, 1 }; Chris@114: double re[] = { 999, 999, 999, 999 }; Chris@114: double im[] = { 999, 999, 999, 999 }; Chris@114: FFT(4).process(false, in, 0, re, im); Chris@114: BOOST_CHECK_EQUAL(re[0], 4.0); Chris@114: BOOST_CHECK_EQUAL(re[1], 0.0); Chris@114: BOOST_CHECK_EQUAL(re[2], 0.0); Chris@114: BOOST_CHECK_EQUAL(re[3], 0.0); Chris@114: COMPARE_CONST(im, 0.0); Chris@114: double back[4]; Chris@114: double backim[4]; Chris@114: FFT(4).process(true, re, im, back, backim); Chris@114: COMPARE_ARRAY(back, in); Chris@114: COMPARE_CONST(backim, 0.0); Chris@114: } Chris@114: Chris@114: BOOST_AUTO_TEST_CASE(r_dc) Chris@114: { Chris@114: // DC-only signal. The DC bin is purely real Chris@114: double in[] = { 1, 1, 1, 1 }; Chris@114: double re[] = { 999, 999, 999, 999 }; Chris@114: double im[] = { 999, 999, 999, 999 }; Chris@114: FFTReal(4).forward(in, re, im); Chris@114: BOOST_CHECK_EQUAL(re[0], 4.0); Chris@114: BOOST_CHECK_EQUAL(re[1], 0.0); Chris@114: BOOST_CHECK_EQUAL(re[2], 0.0); Chris@114: BOOST_CHECK_EQUAL(re[3], 0.0); Chris@114: COMPARE_CONST(im, 0.0); Chris@114: double back[4]; Chris@114: // check conjugates are reconstructed Chris@114: re[3] = 999; Chris@114: im[3] = 999; Chris@114: FFTReal(4).inverse(re, im, back); Chris@114: COMPARE_ARRAY(back, in); Chris@114: } Chris@114: Chris@159: BOOST_AUTO_TEST_CASE(c_dc) Chris@159: { Chris@159: // DC-only signal. The DC bin is purely real Chris@159: double rin[] = { 1, 1, 1, 1 }; Chris@159: double iin[] = { 1, 1, 1, 1 }; Chris@159: double re[] = { 999, 999, 999, 999 }; Chris@159: double im[] = { 999, 999, 999, 999 }; Chris@159: FFT(4).process(false, rin, iin, re, im); Chris@159: BOOST_CHECK_EQUAL(re[0], 4.0); Chris@159: BOOST_CHECK_EQUAL(re[1], 0.0); Chris@159: BOOST_CHECK_EQUAL(re[2], 0.0); Chris@159: BOOST_CHECK_EQUAL(re[3], 0.0); Chris@159: BOOST_CHECK_EQUAL(im[0], 4.0); Chris@159: BOOST_CHECK_EQUAL(im[1], 0.0); Chris@159: BOOST_CHECK_EQUAL(im[2], 0.0); Chris@159: BOOST_CHECK_EQUAL(im[3], 0.0); Chris@159: double back[4]; Chris@159: double backim[4]; Chris@159: FFT(4).process(true, re, im, back, backim); Chris@159: COMPARE_ARRAY(back, rin); Chris@159: COMPARE_ARRAY(backim, iin); Chris@159: } Chris@159: Chris@114: BOOST_AUTO_TEST_CASE(sine) Chris@114: { Chris@114: // Sine. Output is purely imaginary Chris@114: double in[] = { 0, 1, 0, -1 }; Chris@114: double re[] = { 999, 999, 999, 999 }; Chris@114: double im[] = { 999, 999, 999, 999 }; Chris@114: FFT(4).process(false, in, 0, re, im); Chris@114: COMPARE_CONST(re, 0.0); Chris@114: BOOST_CHECK_EQUAL(im[0], 0.0); Chris@114: BOOST_CHECK_EQUAL(im[1], -2.0); Chris@114: BOOST_CHECK_EQUAL(im[2], 0.0); Chris@114: BOOST_CHECK_EQUAL(im[3], 2.0); Chris@114: double back[4]; Chris@114: double backim[4]; Chris@114: FFT(4).process(true, re, im, back, backim); Chris@114: COMPARE_ARRAY(back, in); Chris@114: COMPARE_CONST(backim, 0.0); Chris@114: } Chris@114: Chris@114: BOOST_AUTO_TEST_CASE(r_sine) Chris@114: { Chris@114: // Sine. Output is purely imaginary Chris@114: double in[] = { 0, 1, 0, -1 }; Chris@114: double re[] = { 999, 999, 999, 999 }; Chris@114: double im[] = { 999, 999, 999, 999 }; Chris@114: FFTReal(4).forward(in, re, im); Chris@114: COMPARE_CONST(re, 0.0); Chris@114: BOOST_CHECK_EQUAL(im[0], 0.0); Chris@114: BOOST_CHECK_EQUAL(im[1], -2.0); Chris@114: BOOST_CHECK_EQUAL(im[2], 0.0); Chris@114: BOOST_CHECK_EQUAL(im[3], 2.0); Chris@114: double back[4]; Chris@114: // check conjugates are reconstructed Chris@114: re[3] = 999; Chris@114: im[3] = 999; Chris@114: FFTReal(4).inverse(re, im, back); Chris@114: COMPARE_ARRAY(back, in); Chris@114: } Chris@114: Chris@114: BOOST_AUTO_TEST_CASE(cosine) Chris@114: { Chris@114: // Cosine. Output is purely real Chris@114: double in[] = { 1, 0, -1, 0 }; Chris@114: double re[] = { 999, 999, 999, 999 }; Chris@114: double im[] = { 999, 999, 999, 999 }; Chris@114: FFT(4).process(false, in, 0, re, im); Chris@114: BOOST_CHECK_EQUAL(re[0], 0.0); Chris@114: BOOST_CHECK_EQUAL(re[1], 2.0); Chris@114: BOOST_CHECK_EQUAL(re[2], 0.0); Chris@114: BOOST_CHECK_EQUAL(re[3], 2.0); Chris@114: COMPARE_CONST(im, 0.0); Chris@114: double back[4]; Chris@114: double backim[4]; Chris@114: FFT(4).process(true, re, im, back, backim); Chris@114: COMPARE_ARRAY(back, in); Chris@114: COMPARE_CONST(backim, 0.0); Chris@114: } Chris@114: Chris@114: BOOST_AUTO_TEST_CASE(r_cosine) Chris@114: { Chris@114: // Cosine. Output is purely real Chris@114: double in[] = { 1, 0, -1, 0 }; Chris@114: double re[] = { 999, 999, 999, 999 }; Chris@114: double im[] = { 999, 999, 999, 999 }; Chris@114: FFTReal(4).forward(in, re, im); Chris@114: BOOST_CHECK_EQUAL(re[0], 0.0); Chris@114: BOOST_CHECK_EQUAL(re[1], 2.0); Chris@114: BOOST_CHECK_EQUAL(re[2], 0.0); Chris@114: BOOST_CHECK_EQUAL(re[3], 2.0); Chris@114: COMPARE_CONST(im, 0.0); Chris@114: double back[4]; Chris@114: // check conjugates are reconstructed Chris@114: re[3] = 999; Chris@114: im[3] = 999; Chris@114: FFTReal(4).inverse(re, im, back); Chris@114: COMPARE_ARRAY(back, in); Chris@114: } Chris@159: Chris@159: BOOST_AUTO_TEST_CASE(c_cosine) Chris@159: { Chris@159: // Cosine. Output is purely real Chris@159: double rin[] = { 1, 0, -1, 0 }; Chris@159: double iin[] = { 1, 0, -1, 0 }; Chris@159: double re[] = { 999, 999, 999, 999 }; Chris@159: double im[] = { 999, 999, 999, 999 }; Chris@159: FFT(4).process(false, rin, iin, re, im); Chris@159: BOOST_CHECK_EQUAL(re[0], 0.0); Chris@159: BOOST_CHECK_EQUAL(re[1], 2.0); Chris@159: BOOST_CHECK_EQUAL(re[2], 0.0); Chris@159: BOOST_CHECK_EQUAL(re[3], 2.0); Chris@159: BOOST_CHECK_EQUAL(im[0], 0.0); Chris@159: BOOST_CHECK_EQUAL(im[1], 2.0); Chris@159: BOOST_CHECK_EQUAL(im[2], 0.0); Chris@159: BOOST_CHECK_EQUAL(im[3], 2.0); Chris@159: double back[4]; Chris@159: double backim[4]; Chris@159: FFT(4).process(true, re, im, back, backim); Chris@159: COMPARE_ARRAY(back, rin); Chris@159: COMPARE_ARRAY(backim, iin); Chris@159: } Chris@114: Chris@114: BOOST_AUTO_TEST_CASE(sineCosine) Chris@114: { Chris@114: // Sine and cosine mixed Chris@114: double in[] = { 0.5, 1, -0.5, -1 }; Chris@114: double re[] = { 999, 999, 999, 999 }; Chris@114: double im[] = { 999, 999, 999, 999 }; Chris@114: FFT(4).process(false, in, 0, re, im); Chris@114: BOOST_CHECK_EQUAL(re[0], 0.0); Chris@114: BOOST_CHECK_CLOSE(re[1], 1.0, 1e-12); Chris@114: BOOST_CHECK_EQUAL(re[2], 0.0); Chris@114: BOOST_CHECK_CLOSE(re[3], 1.0, 1e-12); Chris@114: BOOST_CHECK_EQUAL(im[0], 0.0); Chris@114: BOOST_CHECK_CLOSE(im[1], -2.0, 1e-12); Chris@114: BOOST_CHECK_EQUAL(im[2], 0.0); Chris@114: BOOST_CHECK_CLOSE(im[3], 2.0, 1e-12); Chris@114: double back[4]; Chris@114: double backim[4]; Chris@114: FFT(4).process(true, re, im, back, backim); Chris@114: COMPARE_ARRAY(back, in); Chris@114: COMPARE_CONST(backim, 0.0); Chris@114: } Chris@114: Chris@114: BOOST_AUTO_TEST_CASE(r_sineCosine) Chris@114: { Chris@114: // Sine and cosine mixed Chris@114: double in[] = { 0.5, 1, -0.5, -1 }; Chris@114: double re[] = { 999, 999, 999, 999 }; Chris@114: double im[] = { 999, 999, 999, 999 }; Chris@114: FFTReal(4).forward(in, re, im); Chris@114: BOOST_CHECK_EQUAL(re[0], 0.0); Chris@114: BOOST_CHECK_CLOSE(re[1], 1.0, 1e-12); Chris@114: BOOST_CHECK_EQUAL(re[2], 0.0); Chris@114: BOOST_CHECK_CLOSE(re[3], 1.0, 1e-12); Chris@114: BOOST_CHECK_EQUAL(im[0], 0.0); Chris@114: BOOST_CHECK_CLOSE(im[1], -2.0, 1e-12); Chris@114: BOOST_CHECK_EQUAL(im[2], 0.0); Chris@114: BOOST_CHECK_CLOSE(im[3], 2.0, 1e-12); Chris@114: double back[4]; Chris@114: // check conjugates are reconstructed Chris@114: re[3] = 999; Chris@114: im[3] = 999; Chris@114: FFTReal(4).inverse(re, im, back); Chris@114: COMPARE_ARRAY(back, in); Chris@114: } Chris@159: Chris@159: BOOST_AUTO_TEST_CASE(c_sineCosine) Chris@159: { Chris@159: double rin[] = { 1, 0, -1, 0 }; Chris@159: double iin[] = { 0, 1, 0, -1 }; Chris@159: double re[] = { 999, 999, 999, 999 }; Chris@159: double im[] = { 999, 999, 999, 999 }; Chris@159: FFT(4).process(false, rin, iin, re, im); Chris@159: BOOST_CHECK_EQUAL(re[0], 0.0); Chris@159: BOOST_CHECK_EQUAL(re[1], 4.0); Chris@159: BOOST_CHECK_EQUAL(re[2], 0.0); Chris@159: BOOST_CHECK_EQUAL(re[3], 0.0); Chris@159: COMPARE_CONST(im, 0.0); Chris@159: double back[4]; Chris@159: double backim[4]; Chris@159: FFT(4).process(true, re, im, back, backim); Chris@159: COMPARE_ARRAY(back, rin); Chris@159: COMPARE_ARRAY(backim, iin); Chris@159: } Chris@114: Chris@114: BOOST_AUTO_TEST_CASE(nyquist) Chris@114: { Chris@114: double in[] = { 1, -1, 1, -1 }; Chris@114: double re[] = { 999, 999, 999, 999 }; Chris@114: double im[] = { 999, 999, 999, 999 }; Chris@114: FFT(4).process(false, in, 0, re, im); Chris@114: BOOST_CHECK_EQUAL(re[0], 0.0); Chris@114: BOOST_CHECK_EQUAL(re[1], 0.0); Chris@114: BOOST_CHECK_EQUAL(re[2], 4.0); Chris@114: BOOST_CHECK_EQUAL(re[3], 0.0); Chris@114: COMPARE_CONST(im, 0.0); Chris@114: double back[4]; Chris@114: double backim[4]; Chris@114: FFT(4).process(true, re, im, back, backim); Chris@114: COMPARE_ARRAY(back, in); Chris@114: COMPARE_CONST(backim, 0.0); Chris@114: } Chris@114: Chris@114: BOOST_AUTO_TEST_CASE(r_nyquist) Chris@114: { Chris@114: double in[] = { 1, -1, 1, -1 }; Chris@114: double re[] = { 999, 999, 999, 999 }; Chris@114: double im[] = { 999, 999, 999, 999 }; Chris@114: FFTReal(4).forward(in, re, im); Chris@114: BOOST_CHECK_EQUAL(re[0], 0.0); Chris@114: BOOST_CHECK_EQUAL(re[1], 0.0); Chris@114: BOOST_CHECK_EQUAL(re[2], 4.0); Chris@114: BOOST_CHECK_EQUAL(re[3], 0.0); Chris@114: COMPARE_CONST(im, 0.0); Chris@114: double back[4]; Chris@114: // check conjugates are reconstructed Chris@114: re[3] = 999; Chris@114: im[3] = 999; Chris@114: FFTReal(4).inverse(re, im, back); Chris@114: COMPARE_ARRAY(back, in); Chris@114: } Chris@114: Chris@114: BOOST_AUTO_TEST_CASE(dirac) Chris@114: { Chris@114: double in[] = { 1, 0, 0, 0 }; Chris@114: double re[] = { 999, 999, 999, 999 }; Chris@114: double im[] = { 999, 999, 999, 999 }; Chris@114: FFT(4).process(false, in, 0, re, im); Chris@114: BOOST_CHECK_EQUAL(re[0], 1.0); Chris@114: BOOST_CHECK_EQUAL(re[1], 1.0); Chris@114: BOOST_CHECK_EQUAL(re[2], 1.0); Chris@114: BOOST_CHECK_EQUAL(re[3], 1.0); Chris@114: COMPARE_CONST(im, 0.0); Chris@114: double back[4]; Chris@114: double backim[4]; Chris@114: FFT(4).process(true, re, im, back, backim); Chris@114: COMPARE_ARRAY(back, in); Chris@114: COMPARE_CONST(backim, 0.0); Chris@114: } Chris@114: Chris@114: BOOST_AUTO_TEST_CASE(r_dirac) Chris@114: { Chris@114: double in[] = { 1, 0, 0, 0 }; Chris@114: double re[] = { 999, 999, 999, 999 }; Chris@114: double im[] = { 999, 999, 999, 999 }; Chris@114: FFTReal(4).forward(in, re, im); Chris@114: BOOST_CHECK_EQUAL(re[0], 1.0); Chris@114: BOOST_CHECK_EQUAL(re[1], 1.0); Chris@114: BOOST_CHECK_EQUAL(re[2], 1.0); Chris@114: BOOST_CHECK_EQUAL(re[3], 1.0); Chris@114: COMPARE_CONST(im, 0.0); Chris@114: double back[4]; Chris@114: // check conjugates are reconstructed Chris@114: re[3] = 999; Chris@114: im[3] = 999; Chris@114: FFTReal(4).inverse(re, im, back); Chris@114: COMPARE_ARRAY(back, in); Chris@114: } Chris@114: Chris@129: BOOST_AUTO_TEST_CASE(sizes) Chris@129: { Chris@129: // Complex supports any size. A single test with an odd size Chris@129: // will do here, without getting too much into our expectations Chris@129: // about supported butterflies etc Chris@129: Chris@129: double in[] = { 1, 1, 1 }; Chris@129: double re[] = { 999, 999, 999 }; Chris@129: double im[] = { 999, 999, 999 }; Chris@129: FFT(3).process(false, in, 0, re, im); Chris@129: BOOST_CHECK_EQUAL(re[0], 3.0); Chris@129: BOOST_CHECK_EQUAL(re[1], 0.0); Chris@129: BOOST_CHECK_EQUAL(re[2], 0.0); Chris@129: COMPARE_CONST(im, 0.0); Chris@129: double back[3]; Chris@129: double backim[3]; Chris@129: FFT(3).process(true, re, im, back, backim); Chris@129: COMPARE_ARRAY(back, in); Chris@129: COMPARE_CONST(backim, 0.0); Chris@129: } Chris@129: Chris@129: BOOST_AUTO_TEST_CASE(r_sizes) Chris@129: { Chris@129: // Real supports any even size, but not odd ones Chris@129: Chris@129: BOOST_CHECK_THROW(FFTReal r(3), std::invalid_argument); Chris@129: Chris@129: double in[] = { 1, 1, 1, 1, 1, 1 }; Chris@129: double re[] = { 999, 999, 999, 999, 999, 999 }; Chris@129: double im[] = { 999, 999, 999, 999, 999, 999 }; Chris@129: FFTReal(6).forward(in, re, im); Chris@129: BOOST_CHECK_EQUAL(re[0], 6.0); Chris@129: BOOST_CHECK_EQUAL(re[1], 0.0); Chris@129: BOOST_CHECK_EQUAL(re[2], 0.0); Chris@129: BOOST_CHECK_EQUAL(re[3], 0.0); Chris@129: BOOST_CHECK_EQUAL(re[4], 0.0); Chris@129: BOOST_CHECK_EQUAL(re[5], 0.0); Chris@129: COMPARE_CONST(im, 0.0); Chris@129: double back[6]; Chris@129: FFTReal(6).inverse(re, im, back); Chris@129: COMPARE_ARRAY(back, in); Chris@129: } Chris@129: Chris@110: BOOST_AUTO_TEST_SUITE_END() Chris@110: