cannam@18: /* cannam@18: * cluster_segmenter.c cannam@18: * soundbite cannam@18: * cannam@18: * Created by Mark Levy on 06/04/2006. cannam@18: * Copyright 2006 Centre for Digital Music, Queen Mary, University of London. All rights reserved. cannam@18: * cannam@18: */ cannam@18: cannam@18: #include "cluster_segmenter.h" cannam@18: cannam@18: extern int readmatarray_size(const char *filepath, int n_array, int* t, int* d); cannam@18: extern int readmatarray(const char *filepath, int n_array, int t, int d, double** arr); cannam@18: cannam@18: /* converts constant-Q features to normalised chroma */ cannam@18: void cq2chroma(double** cq, int nframes, int ncoeff, int bins, double** chroma) cannam@18: { cannam@18: int noct = ncoeff / bins; /* number of complete octaves in constant-Q */ cannam@18: int t, b, oct, ix; cannam@18: //double maxchroma; /* max chroma value at each time, for normalisation */ cannam@18: //double sum; /* for normalisation */ cannam@18: cannam@18: for (t = 0; t < nframes; t++) cannam@18: { cannam@18: for (b = 0; b < bins; b++) cannam@18: chroma[t][b] = 0; cannam@18: for (oct = 0; oct < noct; oct++) cannam@18: { cannam@18: ix = oct * bins; cannam@18: for (b = 0; b < bins; b++) cannam@18: chroma[t][b] += fabs(cq[t][ix+b]); cannam@18: } cannam@18: /* normalise to unit sum cannam@18: sum = 0; cannam@18: for (b = 0; b < bins; b++) cannam@18: sum += chroma[t][b]; cannam@18: for (b = 0; b < bins; b++) cannam@18: chroma[t][b] /= sum; cannam@20: */ cannam@18: /* normalise to unit max - NO this made results much worse! cannam@18: maxchroma = 0; cannam@18: for (b = 0; b < bins; b++) cannam@18: if (chroma[t][b] > maxchroma) cannam@18: maxchroma = chroma[t][b]; cannam@18: if (maxchroma > 0) cannam@18: for (b = 0; b < bins; b++) cannam@18: chroma[t][b] /= maxchroma; cannam@18: */ cannam@18: } cannam@18: } cannam@18: cannam@18: /* applies MPEG-7 normalisation to constant-Q features, storing normalised envelope (norm) in last feature dimension */ cannam@18: void mpeg7_constq(double** features, int nframes, int ncoeff) cannam@18: { cannam@18: int i, j; cannam@18: double ss; cannam@18: double env; cannam@18: double maxenv = 0; cannam@18: cannam@18: /* convert const-Q features to dB scale */ cannam@18: for (i = 0; i < nframes; i++) cannam@18: for (j = 0; j < ncoeff; j++) cannam@18: features[i][j] = 10.0 * log10(features[i][j]+DBL_EPSILON); cannam@18: cannam@18: /* normalise each feature vector and add the norm as an extra feature dimension */ cannam@18: for (i = 0; i < nframes; i++) cannam@18: { cannam@18: ss = 0; cannam@18: for (j = 0; j < ncoeff; j++) cannam@18: ss += features[i][j] * features[i][j]; cannam@18: env = sqrt(ss); cannam@18: for (j = 0; j < ncoeff; j++) cannam@18: features[i][j] /= env; cannam@18: features[i][ncoeff] = env; cannam@18: if (env > maxenv) cannam@18: maxenv = env; cannam@18: } cannam@18: /* normalise the envelopes */ cannam@18: for (i = 0; i < nframes; i++) cannam@18: features[i][ncoeff] /= maxenv; cannam@18: } cannam@18: cannam@18: /* return histograms h[nx*m] of data x[nx] into m bins using a sliding window of length h_len (MUST BE ODD) */ cannam@18: /* NB h is a vector in row major order, as required by cluster_melt() */ cannam@18: /* for historical reasons we normalise the histograms by their norm (not to sum to one) */ cannam@18: void create_histograms(int* x, int nx, int m, int hlen, double* h) cannam@18: { cannam@18: int i, j, t; cannam@18: double norm; cannam@41: cannam@41: for (i = 0; i < nx*m; i++) cannam@41: h[i] = 0; cannam@41: cannam@18: for (i = hlen/2; i < nx-hlen/2; i++) cannam@18: { cannam@18: for (j = 0; j < m; j++) cannam@18: h[i*m+j] = 0; cannam@18: for (t = i-hlen/2; t <= i+hlen/2; t++) cannam@18: ++h[i*m+x[t]]; cannam@18: norm = 0; cannam@18: for (j = 0; j < m; j++) cannam@18: norm += h[i*m+j] * h[i*m+j]; cannam@18: for (j = 0; j < m; j++) cannam@18: h[i*m+j] /= norm; cannam@18: } cannam@18: cannam@18: /* duplicate histograms at beginning and end to create one histogram for each data value supplied */ cannam@18: for (i = 0; i < hlen/2; i++) cannam@18: for (j = 0; j < m; j++) cannam@18: h[i*m+j] = h[hlen/2*m+j]; cannam@18: for (i = nx-hlen/2; i < nx; i++) cannam@18: for (j = 0; j < m; j++) cannam@18: h[i*m+j] = h[(nx-hlen/2-1)*m+j]; cannam@18: } cannam@18: cannam@18: /* segment using HMM and then histogram clustering */ cannam@18: void cluster_segment(int* q, double** features, int frames_read, int feature_length, int nHMM_states, cannam@18: int histogram_length, int nclusters, int neighbour_limit) cannam@18: { cannam@18: int i, j; cannam@18: cannam@18: /*****************************/ cannam@18: if (0) { cannam@18: /* try just using the predominant bin number as a 'decoded state' */ cannam@18: nHMM_states = feature_length + 1; /* allow a 'zero' state */ cannam@18: double chroma_thresh = 0.05; cannam@18: double maxval; cannam@18: int maxbin; cannam@18: for (i = 0; i < frames_read; i++) cannam@18: { cannam@18: maxval = 0; cannam@18: for (j = 0; j < feature_length; j++) cannam@18: { cannam@18: if (features[i][j] > maxval) cannam@18: { cannam@18: maxval = features[i][j]; cannam@18: maxbin = j; cannam@18: } cannam@18: } cannam@18: if (maxval > chroma_thresh) cannam@18: q[i] = maxbin; cannam@18: else cannam@18: q[i] = feature_length; cannam@18: } cannam@18: cannam@18: } cannam@18: if (1) { cannam@18: /*****************************/ cannam@18: cannam@18: cannam@18: /* scale all the features to 'balance covariances' during HMM training */ cannam@18: double scale = 10; cannam@18: for (i = 0; i < frames_read; i++) cannam@18: for (j = 0; j < feature_length; j++) cannam@18: features[i][j] *= scale; cannam@18: cannam@18: /* train an HMM on the features */ cannam@18: cannam@18: /* create a model */ cannam@18: model_t* model = hmm_init(features, frames_read, feature_length, nHMM_states); cannam@18: cannam@18: /* train the model */ cannam@18: hmm_train(features, frames_read, model); cannam@18: cannam@18: printf("\n\nafter training:\n"); cannam@18: hmm_print(model); cannam@18: cannam@18: /* decode the hidden state sequence */ cannam@18: viterbi_decode(features, frames_read, model, q); cannam@18: hmm_close(model); cannam@18: cannam@18: /*****************************/ cannam@18: } cannam@18: /*****************************/ cannam@18: cannam@18: cannam@18: fprintf(stderr, "HMM state sequence:\n"); cannam@18: for (i = 0; i < frames_read; i++) cannam@18: fprintf(stderr, "%d ", q[i]); cannam@18: fprintf(stderr, "\n\n"); cannam@18: cannam@18: /* create histograms of states */ cannam@18: double* h = (double*) malloc(frames_read*nHMM_states*sizeof(double)); /* vector in row major order */ cannam@18: create_histograms(q, frames_read, nHMM_states, histogram_length, h); cannam@18: cannam@18: /* cluster the histograms */ cannam@18: int nbsched = 20; /* length of inverse temperature schedule */ cannam@18: double* bsched = (double*) malloc(nbsched*sizeof(double)); /* inverse temperature schedule */ cannam@18: double b0 = 100; cannam@18: double alpha = 0.7; cannam@18: bsched[0] = b0; cannam@18: for (i = 1; i < nbsched; i++) cannam@18: bsched[i] = alpha * bsched[i-1]; cannam@18: cluster_melt(h, nHMM_states, frames_read, bsched, nbsched, nclusters, neighbour_limit, q); cannam@18: cannam@18: /* now q holds a sequence of cluster assignments */ cannam@18: cannam@18: free(h); cannam@18: free(bsched); cannam@18: } cannam@18: cannam@18: /* segment constant-Q or chroma features */ cannam@18: void constq_segment(int* q, double** features, int frames_read, int bins, int ncoeff, int feature_type, cannam@18: int nHMM_states, int histogram_length, int nclusters, int neighbour_limit) cannam@18: { cannam@18: int feature_length; cannam@18: double** chroma; cannam@18: int i; cannam@18: cannam@18: if (feature_type == FEATURE_TYPE_CONSTQ) cannam@18: { cannam@18: fprintf(stderr, "Converting to dB and normalising...\n"); cannam@18: cannam@18: mpeg7_constq(features, frames_read, ncoeff); cannam@18: cannam@18: fprintf(stderr, "Running PCA...\n"); cannam@18: cannam@18: /* do PCA on the features (but not the envelope) */ cannam@18: int ncomponents = 20; cannam@18: pca_project(features, frames_read, ncoeff, ncomponents); cannam@18: cannam@18: /* copy the envelope so that it immediatly follows the chosen components */ cannam@18: for (i = 0; i < frames_read; i++) cannam@18: features[i][ncomponents] = features[i][ncoeff]; cannam@18: cannam@18: feature_length = ncomponents + 1; cannam@18: cannam@18: /************************************** cannam@18: //TEST cannam@18: // feature file name cannam@18: char* dir = "/Users/mark/documents/semma/audio/"; cannam@18: char* file_name = (char*) malloc((strlen(dir) + strlen(trackname) + strlen("_features_c20r8h0.2f0.6.mat") + 1)*sizeof(char)); cannam@18: strcpy(file_name, dir); cannam@18: strcat(file_name, trackname); cannam@18: strcat(file_name, "_features_c20r8h0.2f0.6.mat"); cannam@18: cannam@18: // get the features from Matlab from mat-file cannam@18: int frames_in_file; cannam@18: readmatarray_size(file_name, 2, &frames_in_file, &feature_length); cannam@18: readmatarray(file_name, 2, frames_in_file, feature_length, features); cannam@18: // copy final frame to ensure that we get as many as we expected cannam@18: int missing_frames = frames_read - frames_in_file; cannam@18: while (missing_frames > 0) cannam@18: { cannam@18: for (i = 0; i < feature_length; i++) cannam@18: features[frames_read-missing_frames][i] = features[frames_read-missing_frames-1][i]; cannam@18: --missing_frames; cannam@18: } cannam@18: cannam@18: free(file_name); cannam@18: ******************************************/ cannam@18: cannam@18: cluster_segment(q, features, frames_read, feature_length, nHMM_states, histogram_length, nclusters, neighbour_limit); cannam@18: } cannam@18: cannam@18: if (feature_type == FEATURE_TYPE_CHROMA) cannam@18: { cannam@18: fprintf(stderr, "Converting to chroma features...\n"); cannam@18: cannam@18: /* convert constant-Q to normalised chroma features */ cannam@18: chroma = (double**) malloc(frames_read*sizeof(double*)); cannam@18: for (i = 0; i < frames_read; i++) cannam@18: chroma[i] = (double*) malloc(bins*sizeof(double)); cannam@18: cq2chroma(features, frames_read, ncoeff, bins, chroma); cannam@18: feature_length = bins; cannam@18: cannam@18: cluster_segment(q, chroma, frames_read, feature_length, nHMM_states, histogram_length, nclusters, neighbour_limit); cannam@18: cannam@18: for (i = 0; i < frames_read; i++) cannam@18: free(chroma[i]); cannam@18: free(chroma); cannam@18: } cannam@18: } cannam@18: cannam@18: cannam@18: