cannam@52: /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ cannam@52: cannam@52: /* cannam@52: QM DSP Library cannam@52: cannam@52: Centre for Digital Music, Queen Mary, University of London. cannam@52: This file copyright 2008-2009 Matthew Davies and QMUL. cannam@52: All rights reserved. cannam@52: */ cannam@52: cannam@52: #include "TempoTrackV2.h" cannam@52: cannam@52: #include cannam@52: #include cannam@52: cannam@52: cannam@52: //#define FRAMESIZE 512 cannam@52: //#define BIGFRAMESIZE 1024 cannam@52: #define TWOPI 6.283185307179586232 cannam@52: #define EPS 0.0000008 // just some arbitrary small number cannam@52: cannam@52: TempoTrackV2::TempoTrackV2() { } cannam@52: TempoTrackV2::~TempoTrackV2() { } cannam@52: cannam@52: void cannam@52: TempoTrackV2::adapt_thresh(d_vec_t &df) cannam@52: { cannam@52: cannam@52: d_vec_t smoothed(df.size()); cannam@52: cannam@52: int p_post = 7; cannam@52: int p_pre = 8; cannam@52: cannam@52: int t = std::min(static_cast(df.size()),p_post); // what is smaller, p_post of df size. This is to avoid accessing outside of arrays cannam@52: cannam@52: // find threshold for first 't' samples, where a full average cannot be computed yet cannam@52: for (int i = 0;i <= t;i++) cannam@52: { cannam@52: int k = std::min((i+p_pre),static_cast(df.size())); cannam@52: smoothed[i] = mean_array(df,1,k); cannam@52: } cannam@52: // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post] cannam@52: for (uint i = t+1;i < df.size()-p_post;i++) cannam@52: { cannam@52: smoothed[i] = mean_array(df,i-p_pre,i+p_post); cannam@52: } cannam@52: // for last few samples calculate threshold, again, not enough samples to do as above cannam@52: for (uint i = df.size()-p_post;i < df.size();i++) cannam@52: { cannam@52: int k = std::max((static_cast (i) -p_post),1); cannam@52: smoothed[i] = mean_array(df,k,df.size()); cannam@52: } cannam@52: cannam@52: // subtract the threshold from the detection function and check that it is not less than 0 cannam@52: for (uint i = 0;i < df.size();i++) cannam@52: { cannam@52: df[i] -= smoothed[i]; cannam@52: if (df[i] < 0) cannam@52: { cannam@52: df[i] = 0; cannam@52: } cannam@52: } cannam@52: } cannam@52: cannam@52: double cannam@52: TempoTrackV2::mean_array(const d_vec_t &dfin,int start,int end) cannam@52: { cannam@52: cannam@52: double sum = 0.; cannam@52: cannam@52: // find sum cannam@52: for (int i = start;i < end+1;i++) cannam@52: { cannam@52: sum += dfin[i]; cannam@52: } cannam@52: cannam@52: return static_cast (sum / (end - start + 1) ); // average and return cannam@52: } cannam@52: cannam@52: void cannam@52: TempoTrackV2::filter_df(d_vec_t &df) cannam@52: { cannam@52: cannam@52: cannam@52: d_vec_t a(3); cannam@52: d_vec_t b(3); cannam@52: d_vec_t lp_df(df.size()); cannam@52: cannam@52: //equivalent in matlab to [b,a] = butter(2,0.4); cannam@52: a[0] = 1.0000; cannam@52: a[1] = -0.3695; cannam@52: a[2] = 0.1958; cannam@52: b[0] = 0.2066; cannam@52: b[1] = 0.4131; cannam@52: b[2] = 0.2066; cannam@52: cannam@52: double inp1 = 0.; cannam@52: double inp2 = 0.; cannam@52: double out1 = 0.; cannam@52: double out2 = 0.; cannam@52: cannam@52: cannam@52: // forwards filtering cannam@52: for (uint i = 0;i < df.size();i++) cannam@52: { cannam@52: lp_df[i] = b[0]*df[i] + b[1]*inp1 + b[2]*inp2 - a[1]*out1 - a[2]*out2; cannam@52: inp2 = inp1; cannam@52: inp1 = df[i]; cannam@52: out2 = out1; cannam@52: out1 = lp_df[i]; cannam@52: } cannam@52: cannam@52: cannam@52: // copy forwards filtering to df... cannam@52: // but, time-reversed, ready for backwards filtering cannam@52: for (uint i = 0;i < df.size();i++) cannam@52: { cannam@52: df[i] = lp_df[df.size()-i]; cannam@52: } cannam@52: cannam@52: for (uint i = 0;i < df.size();i++) cannam@52: { cannam@52: lp_df[i] = 0.; cannam@52: } cannam@52: cannam@52: inp1 = 0.; inp2 = 0.; cannam@52: out1 = 0.; out2 = 0.; cannam@52: cannam@52: // backwards filetering on time-reversed df cannam@52: for (uint i = 0;i < df.size();i++) cannam@52: { cannam@52: lp_df[i] = b[0]*df[i] + b[1]*inp1 + b[2]*inp2 - a[1]*out1 - a[2]*out2; cannam@52: inp2 = inp1; cannam@52: inp1 = df[i]; cannam@52: out2 = out1; cannam@52: out1 = lp_df[i]; cannam@52: } cannam@52: cannam@52: // write the re-reversed (i.e. forward) version back to df cannam@52: for (uint i = 0;i < df.size();i++) cannam@52: { cannam@52: df[i] = lp_df[df.size()-i]; cannam@52: } cannam@52: cannam@52: cannam@52: } cannam@52: cannam@52: cannam@52: void cannam@52: TempoTrackV2::calculateBeatPeriod(const d_vec_t &df, d_vec_t &beat_period) cannam@52: { cannam@52: cannam@52: // to follow matlab.. split into 512 sample frames with a 128 hop size cannam@52: // calculate the acf, cannam@52: // then the rcf.. and then stick the rcfs as columns of a matrix cannam@52: // then call viterbi decoding with weight vector and transition matrix cannam@52: // and get best path cannam@52: cannam@52: uint wv_len = 128; cannam@52: double rayparam = 43.; cannam@52: cannam@52: // make rayleigh weighting curve cannam@52: d_vec_t wv(wv_len); cannam@52: for (uint i=0; i (i) / pow(rayparam,2.)) * exp((-1.*pow(-static_cast (i),2.)) / (2.*pow(rayparam,2.))); cannam@52: } cannam@52: cannam@52: cannam@52: uint winlen = 512; cannam@52: uint step = 128; cannam@52: cannam@52: d_mat_t rcfmat; cannam@52: int col_counter = -1; cannam@52: // main loop for beat period calculation cannam@52: for (uint i=0; i<(df.size()-winlen); i+=step) cannam@52: { cannam@52: // get dfframe cannam@52: d_vec_t dfframe(winlen); cannam@52: for (uint k=0; k (sum/ (dfframe.size()-lag)); cannam@52: } cannam@52: cannam@52: cannam@52: // for (uint i=0; i(i); cannam@52: tmat[i][j] = exp( (-1.*pow((j-mu),2.)) / (2.*pow(sigma,2.)) ); cannam@52: } cannam@52: } cannam@52: cannam@52: d_mat_t delta; cannam@52: i_mat_t psi; cannam@52: for (uint i=0;i 0 ;t--) cannam@52: { cannam@52: bestpath[t] = psi[t+1][bestpath[t+1]]; cannam@52: } cannam@52: // very weird hack! cannam@52: bestpath[0] = psi[1][bestpath[1]]; cannam@52: cannam@52: // for (uint i=0; i (beat_period[i]); cannam@52: txwt[j] = exp( -0.5*pow(tightness * log((round(2*mu)-j)/mu),2)); cannam@52: cannam@52: scorecands[j] = txwt[j] * cumscore[i+prange_min+j]; cannam@52: } cannam@52: cannam@52: double vv = get_max_val(scorecands); cannam@52: int xx = get_max_ind(scorecands); cannam@52: cannam@52: cumscore[i] = alpha*vv + (1.-alpha)*localscore[i]; cannam@52: cannam@52: backlink[i] = i+prange_min+xx; cannam@52: cannam@52: } cannam@52: cannam@52: cannam@52: d_vec_t tmp_vec; cannam@52: for (uint i=cumscore.size() - beat_period[beat_period.size()-1] ; i 3*beat_period[0]) cannam@52: { cannam@52: ibeats.push_back(backlink[ibeats.back()]); cannam@52: } cannam@52: cannam@52: cannam@52: for (uint i=0; i(ibeats[i]) ); cannam@52: cannam@52: // cout << ibeats[i] << " " << beats[i] <