Chris@202: /* dgemv.f -- translated by f2c (version 20061008). Chris@202: You must link the resulting object file with libf2c: Chris@202: on Microsoft Windows system, link with libf2c.lib; Chris@202: on Linux or Unix systems, link with .../path/to/libf2c.a -lm Chris@202: or, if you install libf2c.a in a standard place, with -lf2c -lm Chris@202: -- in that order, at the end of the command line, as in Chris@202: cc *.o -lf2c -lm Chris@202: Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., Chris@202: Chris@202: http://www.netlib.org/f2c/libf2c.zip Chris@202: */ Chris@202: Chris@202: #include "f2c.h" Chris@202: #include "blaswrap.h" Chris@202: Chris@202: /* Subroutine */ int dgemv_(char *trans, integer *m, integer *n, doublereal * Chris@202: alpha, doublereal *a, integer *lda, doublereal *x, integer *incx, Chris@202: doublereal *beta, doublereal *y, integer *incy) Chris@202: { Chris@202: /* System generated locals */ Chris@202: integer a_dim1, a_offset, i__1, i__2; Chris@202: Chris@202: /* Local variables */ Chris@202: integer i__, j, ix, iy, jx, jy, kx, ky, info; Chris@202: doublereal temp; Chris@202: integer lenx, leny; Chris@202: extern logical lsame_(char *, char *); Chris@202: extern /* Subroutine */ int xerbla_(char *, integer *); Chris@202: Chris@202: /* .. Scalar Arguments .. */ Chris@202: /* .. */ Chris@202: /* .. Array Arguments .. */ Chris@202: /* .. */ Chris@202: Chris@202: /* Purpose */ Chris@202: /* ======= */ Chris@202: Chris@202: /* DGEMV performs one of the matrix-vector operations */ Chris@202: Chris@202: /* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, */ Chris@202: Chris@202: /* where alpha and beta are scalars, x and y are vectors and A is an */ Chris@202: /* m by n matrix. */ Chris@202: Chris@202: /* Arguments */ Chris@202: /* ========== */ Chris@202: Chris@202: /* TRANS - CHARACTER*1. */ Chris@202: /* On entry, TRANS specifies the operation to be performed as */ Chris@202: /* follows: */ Chris@202: Chris@202: /* TRANS = 'N' or 'n' y := alpha*A*x + beta*y. */ Chris@202: Chris@202: /* TRANS = 'T' or 't' y := alpha*A'*x + beta*y. */ Chris@202: Chris@202: /* TRANS = 'C' or 'c' y := alpha*A'*x + beta*y. */ Chris@202: Chris@202: /* Unchanged on exit. */ Chris@202: Chris@202: /* M - INTEGER. */ Chris@202: /* On entry, M specifies the number of rows of the matrix A. */ Chris@202: /* M must be at least zero. */ Chris@202: /* Unchanged on exit. */ Chris@202: Chris@202: /* N - INTEGER. */ Chris@202: /* On entry, N specifies the number of columns of the matrix A. */ Chris@202: /* N must be at least zero. */ Chris@202: /* Unchanged on exit. */ Chris@202: Chris@202: /* ALPHA - DOUBLE PRECISION. */ Chris@202: /* On entry, ALPHA specifies the scalar alpha. */ Chris@202: /* Unchanged on exit. */ Chris@202: Chris@202: /* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). */ Chris@202: /* Before entry, the leading m by n part of the array A must */ Chris@202: /* contain the matrix of coefficients. */ Chris@202: /* Unchanged on exit. */ Chris@202: Chris@202: /* LDA - INTEGER. */ Chris@202: /* On entry, LDA specifies the first dimension of A as declared */ Chris@202: /* in the calling (sub) program. LDA must be at least */ Chris@202: /* max( 1, m ). */ Chris@202: /* Unchanged on exit. */ Chris@202: Chris@202: /* X - DOUBLE PRECISION array of DIMENSION at least */ Chris@202: /* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' */ Chris@202: /* and at least */ Chris@202: /* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. */ Chris@202: /* Before entry, the incremented array X must contain the */ Chris@202: /* vector x. */ Chris@202: /* Unchanged on exit. */ Chris@202: Chris@202: /* INCX - INTEGER. */ Chris@202: /* On entry, INCX specifies the increment for the elements of */ Chris@202: /* X. INCX must not be zero. */ Chris@202: /* Unchanged on exit. */ Chris@202: Chris@202: /* BETA - DOUBLE PRECISION. */ Chris@202: /* On entry, BETA specifies the scalar beta. When BETA is */ Chris@202: /* supplied as zero then Y need not be set on input. */ Chris@202: /* Unchanged on exit. */ Chris@202: Chris@202: /* Y - DOUBLE PRECISION array of DIMENSION at least */ Chris@202: /* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' */ Chris@202: /* and at least */ Chris@202: /* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. */ Chris@202: /* Before entry with BETA non-zero, the incremented array Y */ Chris@202: /* must contain the vector y. On exit, Y is overwritten by the */ Chris@202: /* updated vector y. */ Chris@202: Chris@202: /* INCY - INTEGER. */ Chris@202: /* On entry, INCY specifies the increment for the elements of */ Chris@202: /* Y. INCY must not be zero. */ Chris@202: /* Unchanged on exit. */ Chris@202: Chris@202: Chris@202: /* Level 2 Blas routine. */ Chris@202: Chris@202: /* -- Written on 22-October-1986. */ Chris@202: /* Jack Dongarra, Argonne National Lab. */ Chris@202: /* Jeremy Du Croz, Nag Central Office. */ Chris@202: /* Sven Hammarling, Nag Central Office. */ Chris@202: /* Richard Hanson, Sandia National Labs. */ Chris@202: Chris@202: Chris@202: /* .. Parameters .. */ Chris@202: /* .. */ Chris@202: /* .. Local Scalars .. */ Chris@202: /* .. */ Chris@202: /* .. External Functions .. */ Chris@202: /* .. */ Chris@202: /* .. External Subroutines .. */ Chris@202: /* .. */ Chris@202: /* .. Intrinsic Functions .. */ Chris@202: /* .. */ Chris@202: Chris@202: /* Test the input parameters. */ Chris@202: Chris@202: /* Parameter adjustments */ Chris@202: a_dim1 = *lda; Chris@202: a_offset = 1 + a_dim1; Chris@202: a -= a_offset; Chris@202: --x; Chris@202: --y; Chris@202: Chris@202: /* Function Body */ Chris@202: info = 0; Chris@202: if (! lsame_(trans, "N") && ! lsame_(trans, "T") && ! lsame_(trans, "C") Chris@202: ) { Chris@202: info = 1; Chris@202: } else if (*m < 0) { Chris@202: info = 2; Chris@202: } else if (*n < 0) { Chris@202: info = 3; Chris@202: } else if (*lda < max(1,*m)) { Chris@202: info = 6; Chris@202: } else if (*incx == 0) { Chris@202: info = 8; Chris@202: } else if (*incy == 0) { Chris@202: info = 11; Chris@202: } Chris@202: if (info != 0) { Chris@202: xerbla_("DGEMV ", &info); Chris@202: return 0; Chris@202: } Chris@202: Chris@202: /* Quick return if possible. */ Chris@202: Chris@202: if (*m == 0 || *n == 0 || *alpha == 0. && *beta == 1.) { Chris@202: return 0; Chris@202: } Chris@202: Chris@202: /* Set LENX and LENY, the lengths of the vectors x and y, and set */ Chris@202: /* up the start points in X and Y. */ Chris@202: Chris@202: if (lsame_(trans, "N")) { Chris@202: lenx = *n; Chris@202: leny = *m; Chris@202: } else { Chris@202: lenx = *m; Chris@202: leny = *n; Chris@202: } Chris@202: if (*incx > 0) { Chris@202: kx = 1; Chris@202: } else { Chris@202: kx = 1 - (lenx - 1) * *incx; Chris@202: } Chris@202: if (*incy > 0) { Chris@202: ky = 1; Chris@202: } else { Chris@202: ky = 1 - (leny - 1) * *incy; Chris@202: } Chris@202: Chris@202: /* Start the operations. In this version the elements of A are */ Chris@202: /* accessed sequentially with one pass through A. */ Chris@202: Chris@202: /* First form y := beta*y. */ Chris@202: Chris@202: if (*beta != 1.) { Chris@202: if (*incy == 1) { Chris@202: if (*beta == 0.) { Chris@202: i__1 = leny; Chris@202: for (i__ = 1; i__ <= i__1; ++i__) { Chris@202: y[i__] = 0.; Chris@202: /* L10: */ Chris@202: } Chris@202: } else { Chris@202: i__1 = leny; Chris@202: for (i__ = 1; i__ <= i__1; ++i__) { Chris@202: y[i__] = *beta * y[i__]; Chris@202: /* L20: */ Chris@202: } Chris@202: } Chris@202: } else { Chris@202: iy = ky; Chris@202: if (*beta == 0.) { Chris@202: i__1 = leny; Chris@202: for (i__ = 1; i__ <= i__1; ++i__) { Chris@202: y[iy] = 0.; Chris@202: iy += *incy; Chris@202: /* L30: */ Chris@202: } Chris@202: } else { Chris@202: i__1 = leny; Chris@202: for (i__ = 1; i__ <= i__1; ++i__) { Chris@202: y[iy] = *beta * y[iy]; Chris@202: iy += *incy; Chris@202: /* L40: */ Chris@202: } Chris@202: } Chris@202: } Chris@202: } Chris@202: if (*alpha == 0.) { Chris@202: return 0; Chris@202: } Chris@202: if (lsame_(trans, "N")) { Chris@202: Chris@202: /* Form y := alpha*A*x + y. */ Chris@202: Chris@202: jx = kx; Chris@202: if (*incy == 1) { Chris@202: i__1 = *n; Chris@202: for (j = 1; j <= i__1; ++j) { Chris@202: if (x[jx] != 0.) { Chris@202: temp = *alpha * x[jx]; Chris@202: i__2 = *m; Chris@202: for (i__ = 1; i__ <= i__2; ++i__) { Chris@202: y[i__] += temp * a[i__ + j * a_dim1]; Chris@202: /* L50: */ Chris@202: } Chris@202: } Chris@202: jx += *incx; Chris@202: /* L60: */ Chris@202: } Chris@202: } else { Chris@202: i__1 = *n; Chris@202: for (j = 1; j <= i__1; ++j) { Chris@202: if (x[jx] != 0.) { Chris@202: temp = *alpha * x[jx]; Chris@202: iy = ky; Chris@202: i__2 = *m; Chris@202: for (i__ = 1; i__ <= i__2; ++i__) { Chris@202: y[iy] += temp * a[i__ + j * a_dim1]; Chris@202: iy += *incy; Chris@202: /* L70: */ Chris@202: } Chris@202: } Chris@202: jx += *incx; Chris@202: /* L80: */ Chris@202: } Chris@202: } Chris@202: } else { Chris@202: Chris@202: /* Form y := alpha*A'*x + y. */ Chris@202: Chris@202: jy = ky; Chris@202: if (*incx == 1) { Chris@202: i__1 = *n; Chris@202: for (j = 1; j <= i__1; ++j) { Chris@202: temp = 0.; Chris@202: i__2 = *m; Chris@202: for (i__ = 1; i__ <= i__2; ++i__) { Chris@202: temp += a[i__ + j * a_dim1] * x[i__]; Chris@202: /* L90: */ Chris@202: } Chris@202: y[jy] += *alpha * temp; Chris@202: jy += *incy; Chris@202: /* L100: */ Chris@202: } Chris@202: } else { Chris@202: i__1 = *n; Chris@202: for (j = 1; j <= i__1; ++j) { Chris@202: temp = 0.; Chris@202: ix = kx; Chris@202: i__2 = *m; Chris@202: for (i__ = 1; i__ <= i__2; ++i__) { Chris@202: temp += a[i__ + j * a_dim1] * x[ix]; Chris@202: ix += *incx; Chris@202: /* L110: */ Chris@202: } Chris@202: y[jy] += *alpha * temp; Chris@202: jy += *incy; Chris@202: /* L120: */ Chris@202: } Chris@202: } Chris@202: } Chris@202: Chris@202: return 0; Chris@202: Chris@202: /* End of DGEMV . */ Chris@202: Chris@202: } /* dgemv_ */