c@225: /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ c@225: c@225: /* c@225: QM DSP Library c@225: c@225: Centre for Digital Music, Queen Mary, University of London. c@225: This file is based on Don Cross's public domain FFT implementation. c@225: */ c@225: c@225: #include "FFT.h" c@280: c@280: #include "maths/MathUtilities.h" c@280: c@225: #include c@225: c@280: #include c@280: c@290: //#define USE_BUILTIN_FFT 1 c@225: c@289: #ifdef USE_BUILTIN_FFT c@289: c@289: FFT::FFT(unsigned int n) : c@289: m_n(n), c@289: m_private(0) c@225: { c@289: if( !MathUtilities::isPowerOfTwo(m_n) ) c@289: { c@289: std::cerr << "ERROR: FFT: Non-power-of-two FFT size " c@289: << m_n << " not supported in this implementation" c@289: << std::endl; c@289: return; c@289: } c@225: } c@225: c@225: FFT::~FFT() c@225: { c@225: c@225: } c@225: c@289: FFTReal::FFTReal(unsigned int n) : c@289: m_n(n), c@289: m_private(0) c@225: { c@289: m_private = new FFT(m_n); c@289: } c@225: c@289: FFTReal::~FFTReal() c@289: { c@289: delete (FFT *)m_private; c@289: } c@289: c@289: void c@289: FFTReal::process(bool inverse, c@289: const double *realIn, c@289: double *realOut, double *imagOut) c@289: { c@289: ((FFT *)m_private)->process(inverse, realIn, 0, realOut, imagOut); c@289: } c@289: c@289: static unsigned int numberOfBitsNeeded(unsigned int p_nSamples) c@289: { c@289: int i; c@289: c@289: if( p_nSamples < 2 ) c@289: { c@289: return 0; c@289: } c@289: c@289: for ( i=0; ; i++ ) c@289: { c@289: if( p_nSamples & (1 << i) ) return i; c@289: } c@289: } c@289: c@289: static unsigned int reverseBits(unsigned int p_nIndex, unsigned int p_nBits) c@289: { c@289: unsigned int i, rev; c@289: c@289: for(i=rev=0; i < p_nBits; i++) c@289: { c@289: rev = (rev << 1) | (p_nIndex & 1); c@289: p_nIndex >>= 1; c@289: } c@289: c@289: return rev; c@289: } c@289: c@289: void c@289: FFT::process(bool p_bInverseTransform, c@289: const double *p_lpRealIn, const double *p_lpImagIn, c@289: double *p_lpRealOut, double *p_lpImagOut) c@289: { c@291: if (!p_lpRealIn || !p_lpRealOut || !p_lpImagOut) return; c@291: c@291: // std::cerr << "FFT::process(" << m_n << "," << p_bInverseTransform << ")" << std::endl; c@225: c@225: unsigned int NumBits; c@225: unsigned int i, j, k, n; c@225: unsigned int BlockSize, BlockEnd; c@225: c@225: double angle_numerator = 2.0 * M_PI; c@225: double tr, ti; c@225: c@289: if( !MathUtilities::isPowerOfTwo(m_n) ) c@225: { c@280: std::cerr << "ERROR: FFT::process: Non-power-of-two FFT size " c@289: << m_n << " not supported in this implementation" c@280: << std::endl; c@225: return; c@225: } c@225: c@225: if( p_bInverseTransform ) angle_numerator = -angle_numerator; c@225: c@289: NumBits = numberOfBitsNeeded ( m_n ); c@225: c@225: c@289: for( i=0; i < m_n; i++ ) c@225: { c@225: j = reverseBits ( i, NumBits ); c@225: p_lpRealOut[j] = p_lpRealIn[i]; c@225: p_lpImagOut[j] = (p_lpImagIn == 0) ? 0.0 : p_lpImagIn[i]; c@225: } c@225: c@225: c@225: BlockEnd = 1; c@289: for( BlockSize = 2; BlockSize <= m_n; BlockSize <<= 1 ) c@225: { c@225: double delta_angle = angle_numerator / (double)BlockSize; c@225: double sm2 = -sin ( -2 * delta_angle ); c@225: double sm1 = -sin ( -delta_angle ); c@225: double cm2 = cos ( -2 * delta_angle ); c@225: double cm1 = cos ( -delta_angle ); c@225: double w = 2 * cm1; c@225: double ar[3], ai[3]; c@225: c@289: for( i=0; i < m_n; i += BlockSize ) c@225: { c@225: c@225: ar[2] = cm2; c@225: ar[1] = cm1; c@225: c@225: ai[2] = sm2; c@225: ai[1] = sm1; c@225: c@225: for ( j=i, n=0; n < BlockEnd; j++, n++ ) c@225: { c@225: c@225: ar[0] = w*ar[1] - ar[2]; c@225: ar[2] = ar[1]; c@225: ar[1] = ar[0]; c@225: c@225: ai[0] = w*ai[1] - ai[2]; c@225: ai[2] = ai[1]; c@225: ai[1] = ai[0]; c@225: c@225: k = j + BlockEnd; c@225: tr = ar[0]*p_lpRealOut[k] - ai[0]*p_lpImagOut[k]; c@225: ti = ar[0]*p_lpImagOut[k] + ai[0]*p_lpRealOut[k]; c@225: c@225: p_lpRealOut[k] = p_lpRealOut[j] - tr; c@225: p_lpImagOut[k] = p_lpImagOut[j] - ti; c@225: c@225: p_lpRealOut[j] += tr; c@225: p_lpImagOut[j] += ti; c@225: c@225: } c@225: } c@225: c@225: BlockEnd = BlockSize; c@225: c@225: } c@225: c@225: c@225: if( p_bInverseTransform ) c@225: { c@289: double denom = (double)m_n; c@225: c@289: for ( i=0; i < m_n; i++ ) c@225: { c@225: p_lpRealOut[i] /= denom; c@225: p_lpImagOut[i] /= denom; c@225: } c@225: } c@225: } c@225: c@289: #else c@225: c@289: #include "kissfft/kiss_fft.h" c@289: #include "kissfft/kiss_fftr.h" c@225: c@290: struct KissFFTRec { c@290: kiss_fft_cfg forward; c@290: kiss_fft_cfg inverse; c@290: kiss_fft_cpx *in; c@290: kiss_fft_cpx *out; c@290: }; c@290: c@290: FFT::FFT(unsigned int n) : c@290: m_n(n), c@290: m_private(0) c@290: { c@290: KissFFTRec *rec = new KissFFTRec; c@290: rec->forward = kiss_fft_alloc(m_n, 0, 0, 0); c@290: rec->inverse = kiss_fft_alloc(m_n, 1, 0, 0); c@290: rec->in = new kiss_fft_cpx[m_n]; c@290: rec->out = new kiss_fft_cpx[m_n]; c@290: m_private = rec; c@290: } c@290: c@290: FFT::~FFT() c@290: { c@290: KissFFTRec *rec = (KissFFTRec *)m_private; c@290: kiss_fft_free(rec->forward); c@290: kiss_fft_free(rec->inverse); c@290: delete[] rec->in; c@290: delete[] rec->out; c@290: } c@290: c@290: void c@290: FFT::process(bool inverse, c@290: const double *rin, const double *iin, c@290: double *rout, double *iout) c@290: { c@290: KissFFTRec *rec = (KissFFTRec *)m_private; c@290: for (int i = 0; i < m_n; ++i) { c@290: rec->in[i].r = rin[i]; c@290: } c@290: if (iin) { c@290: for (int i = 0; i < m_n; ++i) { c@290: rec->in[i].i = iin[i]; c@290: } c@290: } else { c@290: for (int i = 0; i < m_n; ++i) { c@290: rec->in[i].i = 0.0; c@290: } c@290: } c@290: if (inverse) { c@290: kiss_fft(rec->inverse, rec->in, rec->out); c@290: } else { c@290: kiss_fft(rec->forward, rec->in, rec->out); c@290: } c@290: for (int i = 0; i < m_n; ++i) { c@290: rout[i] = rec->out[i].r; c@290: iout[i] = rec->out[i].i; c@290: } c@290: } c@290: c@290: struct KissFFTRealRec { c@290: kiss_fftr_cfg forward; c@290: kiss_fftr_cfg inverse; c@290: kiss_fft_cpx *out; c@290: }; c@290: c@290: FFTReal::FFTReal(unsigned int n) : c@290: m_n(n), c@290: m_private(0) c@290: { c@290: KissFFTRealRec *rec = new KissFFTRealRec; c@290: rec->forward = kiss_fftr_alloc(m_n, 0, 0, 0); c@290: rec->inverse = kiss_fftr_alloc(m_n, 1, 0, 0); c@290: rec->out = new kiss_fft_cpx[m_n]; c@290: m_private = rec; c@290: } c@290: c@290: FFTReal::~FFTReal() c@290: { c@290: KissFFTRealRec *rec = (KissFFTRealRec *)m_private; c@290: kiss_fftr_free(rec->forward); c@290: kiss_fftr_free(rec->inverse); c@290: delete[] rec->out; c@290: } c@290: c@290: void c@290: FFTReal::process(bool inverse, c@290: const double *rin, c@290: double *rout, double *iout) c@290: { c@290: KissFFTRealRec *rec = (KissFFTRealRec *)m_private; c@290: if (inverse) { c@290: kiss_fftr(rec->inverse, rin, rec->out); c@290: } else { c@290: kiss_fftr(rec->forward, rin, rec->out); c@290: } c@290: for (int i = 0; i < m_n; ++i) { c@290: rout[i] = rec->out[i].r; c@290: iout[i] = rec->out[i].i; c@290: } c@290: } c@290: c@289: #endif