Mercurial > hg > qm-dsp
view tests/TestPhaseVocoder.cpp @ 115:f3c69325cca2 pvoc
Do actual phase unwrapping in the phase vocoder!
author | Chris Cannam |
---|---|
date | Wed, 02 Oct 2013 15:05:34 +0100 |
parents | 3cb359d043f0 |
children | 7f5b96734c83 |
line wrap: on
line source
#include "dsp/phasevocoder/PhaseVocoder.h" #include "base/Window.h" #define BOOST_TEST_DYN_LINK #define BOOST_TEST_MAIN #include <boost/test/unit_test.hpp> BOOST_AUTO_TEST_SUITE(TestFFT) #define COMPARE_CONST(a, n) \ for (int cmp_i = 0; cmp_i < (int)(sizeof(a)/sizeof(a[0])); ++cmp_i) { \ BOOST_CHECK_SMALL(a[cmp_i] - n, 1e-14); \ } #define COMPARE_ARRAY(a, b) \ for (int cmp_i = 0; cmp_i < (int)(sizeof(a)/sizeof(a[0])); ++cmp_i) { \ BOOST_CHECK_SMALL(a[cmp_i] - b[cmp_i], 1e-14); \ } #define COMPARE_ARRAY_EXACT(a, b) \ for (int cmp_i = 0; cmp_i < (int)(sizeof(a)/sizeof(a[0])); ++cmp_i) { \ BOOST_CHECK_EQUAL(a[cmp_i], b[cmp_i]); \ } BOOST_AUTO_TEST_CASE(fullcycle) { // Cosine with one cycle exactly equal to pvoc hopsize. This is // pretty much the most trivial case -- in fact it's // indistinguishable from totally silent input (in the phase // values) because the measured phases are zero throughout. // We aren't windowing the input frame because (for once) it // actually *is* just a short part of a continuous infinite // sinusoid. double frame[] = { 1, 0, -1, 0, 1, 0, -1, 0 }; PhaseVocoder pvoc(8, 4); // Make these arrays one element too long at each end, so as to // test for overruns. For frame size 8, we expect 8/2+1 = 5 // mag/phase pairs. double mag[] = { 999, 999, 999, 999, 999, 999, 999 }; double phase[] = { 999, 999, 999, 999, 999, 999, 999 }; double unw[] = { 999, 999, 999, 999, 999, 999, 999 }; pvoc.process(frame, mag + 1, phase + 1, unw + 1); double magExpected0[] = { 999, 0, 0, 4, 0, 0, 999 }; COMPARE_ARRAY_EXACT(mag, magExpected0); double phaseExpected0[] = { 999, 0, 0, 0, 0, 0, 999 }; COMPARE_ARRAY_EXACT(phase, phaseExpected0); double unwExpected0[] = { 999, 0, 0, 0, 0, 0, 999 }; COMPARE_ARRAY(unw, unwExpected0); pvoc.process(frame, mag + 1, phase + 1, unw + 1); double magExpected1[] = { 999, 0, 0, 4, 0, 0, 999 }; COMPARE_ARRAY_EXACT(mag, magExpected1); double phaseExpected1[] = { 999, 0, 0, 0, 0, 0, 999 }; COMPARE_ARRAY(phase, phaseExpected1); // Derivation of values: // // * Bin 0 (DC) always has phase 0 and expected phase 0 // // * Bin 1 has expected phase pi (the hop size is half a cycle at // its frequency), but measured phase 0 (because there is no // signal in that bin). So it has phase error -pi, which is // mapped into (-pi,pi] range as pi, giving an unwrapped phase // of 2*pi. // // * Bin 2 has expected unwrapped phase 2*pi, measured phase 0, // hence error 0 and unwrapped phase 2*pi. // // * Bin 3 is like bin 1: it has expected phase 3*pi, measured // phase 0, so phase error -pi and unwrapped phase 4*pi. // // * Bin 4 (Nyquist) is like bin 2: expected phase 4*pi, measured // phase 0, hence error 0 and unwrapped phase 4*pi. double unwExpected1[] = { 999, 0, 2*M_PI, 2*M_PI, 4*M_PI, 4*M_PI, 999 }; COMPARE_ARRAY(unw, unwExpected1); pvoc.process(frame, mag + 1, phase + 1, unw + 1); double magExpected2[] = { 999, 0, 0, 4, 0, 0, 999 }; COMPARE_ARRAY_EXACT(mag, magExpected2); double phaseExpected2[] = { 999, 0, 0, 0, 0, 0, 999 }; COMPARE_ARRAY(phase, phaseExpected2); double unwExpected2[] = { 999, 0, 4*M_PI, 4*M_PI, 8*M_PI, 8*M_PI, 999 }; COMPARE_ARRAY(unw, unwExpected2); } //!!! signal that starts mid-phase BOOST_AUTO_TEST_SUITE_END()