view dsp/segmentation/ClusterMeltSegmenter.cpp @ 321:f1e6be2de9a5

A threshold (delta) is added in the peak picking parameters structure (PPickParams). It is used as an offset when computing the smoothed detection function. A constructor for the structure PPickParams is also added to set the parameters to 0 when a structure instance is created. Hence programmes using the peak picking parameter structure and which do not set the delta parameter (e.g. QM Vamp note onset detector) won't be affected by the modifications. Functions modified: - dsp/onsets/PeakPicking.cpp - dsp/onsets/PeakPicking.h - dsp/signalconditioning/DFProcess.cpp - dsp/signalconditioning/DFProcess.h
author mathieub <mathieu.barthet@eecs.qmul.ac.uk>
date Mon, 20 Jun 2011 19:01:48 +0100
parents d5014ab8b0e5
children f6ccde089491
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*-  vi:set ts=8 sts=4 sw=4: */

/*
 * ClusterMeltSegmenter.cpp
 *
 * Created by Mark Levy on 23/03/2006.
 * Copyright 2006 Centre for Digital Music, Queen Mary, University of London.

    This program is free software; you can redistribute it and/or
    modify it under the terms of the GNU General Public License as
    published by the Free Software Foundation; either version 2 of the
    License, or (at your option) any later version.  See the file
    COPYING included with this distribution for more information.
 */

#include <cfloat>
#include <cmath>

#include "ClusterMeltSegmenter.h"
#include "cluster_segmenter.h"
#include "segment.h"

#include "dsp/transforms/FFT.h"
#include "dsp/chromagram/ConstantQ.h"
#include "dsp/rateconversion/Decimator.h"
#include "dsp/mfcc/MFCC.h"

ClusterMeltSegmenter::ClusterMeltSegmenter(ClusterMeltSegmenterParams params) :
    window(NULL),
    fft(NULL),
    constq(NULL),
    mfcc(NULL),
    featureType(params.featureType),
    hopSize(params.hopSize),
    windowSize(params.windowSize),
    fmin(params.fmin),
    fmax(params.fmax),
    nbins(params.nbins),
    ncomponents(params.ncomponents),	// NB currently not passed - no. of PCA components is set in cluser_segmenter.c
    nHMMStates(params.nHMMStates),
    nclusters(params.nclusters),
    histogramLength(params.histogramLength),
    neighbourhoodLimit(params.neighbourhoodLimit),
    decimator(NULL)
{
}

void ClusterMeltSegmenter::initialise(int fs)
{
    samplerate = fs;

    if (featureType == FEATURE_TYPE_CONSTQ ||
        featureType == FEATURE_TYPE_CHROMA) {
        
        // run internal processing at 11025 or thereabouts
        int internalRate = 11025;
        int decimationFactor = samplerate / internalRate;
        if (decimationFactor < 1) decimationFactor = 1;

        // must be a power of two
        while (decimationFactor & (decimationFactor - 1)) ++decimationFactor;

        if (decimationFactor > Decimator::getHighestSupportedFactor()) {
            decimationFactor = Decimator::getHighestSupportedFactor();
        }

        if (decimationFactor > 1) {
            decimator = new Decimator(getWindowsize(), decimationFactor);
        }

        CQConfig config;
        config.FS = samplerate / decimationFactor;
        config.min = fmin;
        config.max = fmax;
        config.BPO = nbins;
        config.CQThresh = 0.0054;

        constq = new ConstantQ(config);
        constq->sparsekernel();
        
        ncoeff = constq->getK();

        fft = new FFTReal(constq->getfftlength());
        
    } else if (featureType == FEATURE_TYPE_MFCC) {

        // run internal processing at 22050 or thereabouts
        int internalRate = 22050;
        int decimationFactor = samplerate / internalRate;
        if (decimationFactor < 1) decimationFactor = 1;

        // must be a power of two
        while (decimationFactor & (decimationFactor - 1)) ++decimationFactor;

        if (decimationFactor > Decimator::getHighestSupportedFactor()) {
            decimationFactor = Decimator::getHighestSupportedFactor();
        }

        if (decimationFactor > 1) {
            decimator = new Decimator(getWindowsize(), decimationFactor);
        }

        MFCCConfig config(samplerate / decimationFactor);
        config.fftsize = 2048;
        config.nceps = 19;
        config.want_c0 = true;

        mfcc = new MFCC(config);
        ncoeff = config.nceps + 1;
    }
}

ClusterMeltSegmenter::~ClusterMeltSegmenter() 
{
    delete window;
    delete constq;
    delete decimator;
    delete fft;
}

int
ClusterMeltSegmenter::getWindowsize()
{
    return static_cast<int>(windowSize * samplerate + 0.001);
}

int
ClusterMeltSegmenter::getHopsize()
{
    return static_cast<int>(hopSize * samplerate + 0.001);
}

void ClusterMeltSegmenter::extractFeatures(const double* samples, int nsamples)
{
    if (featureType == FEATURE_TYPE_CONSTQ ||
        featureType == FEATURE_TYPE_CHROMA) {
        extractFeaturesConstQ(samples, nsamples);
    } else if (featureType == FEATURE_TYPE_MFCC) {
        extractFeaturesMFCC(samples, nsamples);
    }
}

void ClusterMeltSegmenter::extractFeaturesConstQ(const double* samples, int nsamples)
{
    if (!constq) {
        std::cerr << "ERROR: ClusterMeltSegmenter::extractFeaturesConstQ: "
                  << "No const-q: initialise not called?"
                  << std::endl;
        return;
    }

    if (nsamples < getWindowsize()) {
        std::cerr << "ERROR: ClusterMeltSegmenter::extractFeatures: nsamples < windowsize (" << nsamples << " < " << getWindowsize() << ")" << std::endl;
        return;
    }

    int fftsize = constq->getfftlength();

    if (!window || window->getSize() != fftsize) {
        delete window;
        window = new Window<double>(HammingWindow, fftsize);
    }

    vector<double> cq(ncoeff);

    for (int i = 0; i < ncoeff; ++i) cq[i] = 0.0;
    
    const double *psource = samples;
    int pcount = nsamples;

    if (decimator) {
        pcount = nsamples / decimator->getFactor();
        double *decout = new double[pcount];
        decimator->process(samples, decout);
        psource = decout;
    }
    
    int origin = 0;
    
//    std::cerr << "nsamples = " << nsamples << ", pcount = " << pcount << std::endl;

    int frames = 0;

    double *frame = new double[fftsize];
    double *real = new double[fftsize];
    double *imag = new double[fftsize];
    double *cqre = new double[ncoeff];
    double *cqim = new double[ncoeff];

    while (origin <= pcount) {

        // always need at least one fft window per block, but after
        // that we want to avoid having any incomplete ones
        if (origin > 0 && origin + fftsize >= pcount) break;

        for (int i = 0; i < fftsize; ++i) {
            if (origin + i < pcount) {
                frame[i] = psource[origin + i];
            } else {
                frame[i] = 0.0;
            }
        }

        for (int i = 0; i < fftsize/2; ++i) {
            double value = frame[i];
            frame[i] = frame[i + fftsize/2];
            frame[i + fftsize/2] = value;
        }

        window->cut(frame);
        
        fft->process(false, frame, real, imag);
        
        constq->process(real, imag, cqre, cqim);
	
        for (int i = 0; i < ncoeff; ++i) {
            cq[i] += sqrt(cqre[i] * cqre[i] + cqim[i] * cqim[i]);
        }
        ++frames;

        origin += fftsize/2;
    }

    delete [] cqre;
    delete [] cqim;
    delete [] real;
    delete [] imag;
    delete [] frame;

    for (int i = 0; i < ncoeff; ++i) {
        cq[i] /= frames;
    }

    if (decimator) delete[] psource;

    features.push_back(cq);
}

void ClusterMeltSegmenter::extractFeaturesMFCC(const double* samples, int nsamples)
{
    if (!mfcc) {
        std::cerr << "ERROR: ClusterMeltSegmenter::extractFeaturesMFCC: "
                  << "No mfcc: initialise not called?"
                  << std::endl;
        return;
    }

    if (nsamples < getWindowsize()) {
        std::cerr << "ERROR: ClusterMeltSegmenter::extractFeatures: nsamples < windowsize (" << nsamples << " < " << getWindowsize() << ")" << std::endl;
        return;
    }

    int fftsize = mfcc->getfftlength();

    vector<double> cc(ncoeff);

    for (int i = 0; i < ncoeff; ++i) cc[i] = 0.0;
    
    const double *psource = samples;
    int pcount = nsamples;

    if (decimator) {
        pcount = nsamples / decimator->getFactor();
        double *decout = new double[pcount];
        decimator->process(samples, decout);
        psource = decout;
    }

    int origin = 0;
    int frames = 0;

    double *frame = new double[fftsize];
    double *ccout = new double[ncoeff];

    while (origin <= pcount) {

        // always need at least one fft window per block, but after
        // that we want to avoid having any incomplete ones
        if (origin > 0 && origin + fftsize >= pcount) break;

        for (int i = 0; i < fftsize; ++i) {
            if (origin + i < pcount) {
                frame[i] = psource[origin + i];
            } else {
                frame[i] = 0.0;
            }
        }

        mfcc->process(frame, ccout);
	
        for (int i = 0; i < ncoeff; ++i) {
            cc[i] += ccout[i];
        }
        ++frames;

        origin += fftsize/2;
    }

    delete [] ccout;
    delete [] frame;

    for (int i = 0; i < ncoeff; ++i) {
        cc[i] /= frames;
    }

    if (decimator) delete[] psource;

    features.push_back(cc);
}

void ClusterMeltSegmenter::segment(int m)
{
    nclusters = m;
    segment();
}

void ClusterMeltSegmenter::setFeatures(const vector<vector<double> >& f)
{
    features = f;
    featureType = FEATURE_TYPE_UNKNOWN;
}

void ClusterMeltSegmenter::segment()
{
    delete constq;
    constq = 0;
    delete mfcc;
    mfcc = 0;
    delete decimator;
    decimator = 0;

    if (features.size() < histogramLength) return;
/*    
    std::cerr << "ClusterMeltSegmenter::segment: have " << features.size()
              << " features with " << features[0].size() << " coefficients (ncoeff = " << ncoeff << ", ncomponents = " << ncomponents << ")" << std::endl;
*/
    // copy the features to a native array and use the existing C segmenter...
    double** arrFeatures = new double*[features.size()];	
    for (int i = 0; i < features.size(); i++)
    {
        if (featureType == FEATURE_TYPE_UNKNOWN) {
            arrFeatures[i] = new double[features[0].size()];
            for (int j = 0; j < features[0].size(); j++)
                arrFeatures[i][j] = features[i][j];	
        } else {
            arrFeatures[i] = new double[ncoeff+1];	// allow space for the normalised envelope
            for (int j = 0; j < ncoeff; j++)
                arrFeatures[i][j] = features[i][j];	
        }
    }
	
    q = new int[features.size()];
	
    if (featureType == FEATURE_TYPE_UNKNOWN ||
        featureType == FEATURE_TYPE_MFCC)
        cluster_segment(q, arrFeatures, features.size(), features[0].size(), nHMMStates, histogramLength, 
                        nclusters, neighbourhoodLimit);
    else
        constq_segment(q, arrFeatures, features.size(), nbins, ncoeff, featureType, 
                       nHMMStates, histogramLength, nclusters, neighbourhoodLimit);
	
    // convert the cluster assignment sequence to a segmentation
    makeSegmentation(q, features.size());		
	
    // de-allocate arrays
    delete [] q;
    for (int i = 0; i < features.size(); i++)
        delete [] arrFeatures[i];
    delete [] arrFeatures;
	
    // clear the features
    clear();
}

void ClusterMeltSegmenter::makeSegmentation(int* q, int len)
{
    segmentation.segments.clear();
    segmentation.nsegtypes = nclusters;
    segmentation.samplerate = samplerate;
	
    Segment segment;
    segment.start = 0;
    segment.type = q[0];
	
    for (int i = 1; i < len; i++)
    {
        if (q[i] != q[i-1])
        {
            segment.end = i * getHopsize();
            segmentation.segments.push_back(segment);
            segment.type = q[i];
            segment.start = segment.end;
        }
    }
    segment.end = len * getHopsize();
    segmentation.segments.push_back(segment);
}