view dsp/chromagram/ConstantQ.cpp @ 321:f1e6be2de9a5

A threshold (delta) is added in the peak picking parameters structure (PPickParams). It is used as an offset when computing the smoothed detection function. A constructor for the structure PPickParams is also added to set the parameters to 0 when a structure instance is created. Hence programmes using the peak picking parameter structure and which do not set the delta parameter (e.g. QM Vamp note onset detector) won't be affected by the modifications. Functions modified: - dsp/onsets/PeakPicking.cpp - dsp/onsets/PeakPicking.h - dsp/signalconditioning/DFProcess.cpp - dsp/signalconditioning/DFProcess.h
author mathieub <mathieu.barthet@eecs.qmul.ac.uk>
date Mon, 20 Jun 2011 19:01:48 +0100
parents d5014ab8b0e5
children 46375e6d1b54
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*-  vi:set ts=8 sts=4 sw=4: */
/*
    QM DSP Library

    Centre for Digital Music, Queen Mary, University of London.
    This file 2005-2006 Christian Landone.

    This program is free software; you can redistribute it and/or
    modify it under the terms of the GNU General Public License as
    published by the Free Software Foundation; either version 2 of the
    License, or (at your option) any later version.  See the file
    COPYING included with this distribution for more information.
*/

#include "ConstantQ.h"
#include "dsp/transforms/FFT.h"

#include <iostream>

#ifdef NOT_DEFINED
// see note in CQprecalc

#include "CQprecalc.cpp"

static bool push_precalculated(int uk, int fftlength,
                               std::vector<unsigned> &is,
                               std::vector<unsigned> &js,
                               std::vector<double> &real,
                               std::vector<double> &imag)
{
    if (uk == 76 && fftlength == 16384) {
        push_76_16384(is, js, real, imag);
        return true;
    }
    if (uk == 144 && fftlength == 4096) {
        push_144_4096(is, js, real, imag);
        return true;
    }
    if (uk == 65 && fftlength == 2048) {
        push_65_2048(is, js, real, imag);
        return true;
    }
    if (uk == 84 && fftlength == 65536) {
        push_84_65536(is, js, real, imag);
        return true;
    }
    return false;
}
#endif

//---------------------------------------------------------------------------
// nextpow2 returns the smallest integer n such that 2^n >= x.
static double nextpow2(double x) {
    double y = ceil(log(x)/log(2.0));
    return(y);
}

static double squaredModule(const double & xx, const double & yy) {
    return xx*xx + yy*yy;
}

//----------------------------------------------------------------------------

ConstantQ::ConstantQ( CQConfig Config ) :
    m_sparseKernel(0)
{
    initialise( Config );
}

ConstantQ::~ConstantQ()
{
    deInitialise();
}

//----------------------------------------------------------------------------
void ConstantQ::sparsekernel()
{
//    std::cerr << "ConstantQ: initialising sparse kernel, uK = " << m_uK << ", FFTLength = " << m_FFTLength << "...";

    SparseKernel *sk = new SparseKernel();

#ifdef NOT_DEFINED
    if (push_precalculated(m_uK, m_FFTLength,
                           sk->is, sk->js, sk->real, sk->imag)) {
//        std::cerr << "using precalculated kernel" << std::endl;
        m_sparseKernel = sk;
        return;
    }
#endif

    //generates spectral kernel matrix (upside down?)
    // initialise temporal kernel with zeros, twice length to deal w. complex numbers

    double* hammingWindowRe = new double [ m_FFTLength ];
    double* hammingWindowIm = new double [ m_FFTLength ];
    double* transfHammingWindowRe = new double [ m_FFTLength ];
    double* transfHammingWindowIm = new double [ m_FFTLength ];

    for (unsigned u=0; u < m_FFTLength; u++) 
    {
	hammingWindowRe[u] = 0;
	hammingWindowIm[u] = 0;
    }

    // Here, fftleng*2 is a guess of the number of sparse cells in the matrix
    // The matrix K x fftlength but the non-zero cells are an antialiased
    // square root function. So mostly is a line, with some grey point.
    sk->is.reserve( m_FFTLength*2 );
    sk->js.reserve( m_FFTLength*2 );
    sk->real.reserve( m_FFTLength*2 );
    sk->imag.reserve( m_FFTLength*2 );
	
    // for each bin value K, calculate temporal kernel, take its fft to
    //calculate the spectral kernel then threshold it to make it sparse and 
    //add it to the sparse kernels matrix
    double squareThreshold = m_CQThresh * m_CQThresh;

    FFT m_FFT(m_FFTLength);
	
    for (unsigned k = m_uK; k--; ) 
    {
        for (unsigned u=0; u < m_FFTLength; u++) 
        {
            hammingWindowRe[u] = 0;
            hammingWindowIm[u] = 0;
        }
        
	// Computing a hamming window
	const unsigned hammingLength = (int) ceil( m_dQ * m_FS / ( m_FMin * pow(2,((double)(k))/(double)m_BPO)));

        unsigned origin = m_FFTLength/2 - hammingLength/2;

	for (unsigned i=0; i<hammingLength; i++) 
	{
	    const double angle = 2*PI*m_dQ*i/hammingLength;
	    const double real = cos(angle);
	    const double imag = sin(angle);
	    const double absol = hamming(hammingLength, i)/hammingLength;
	    hammingWindowRe[ origin + i ] = absol*real;
	    hammingWindowIm[ origin + i ] = absol*imag;
	}

        for (unsigned i = 0; i < m_FFTLength/2; ++i) {
            double temp = hammingWindowRe[i];
            hammingWindowRe[i] = hammingWindowRe[i + m_FFTLength/2];
            hammingWindowRe[i + m_FFTLength/2] = temp;
            temp = hammingWindowIm[i];
            hammingWindowIm[i] = hammingWindowIm[i + m_FFTLength/2];
            hammingWindowIm[i + m_FFTLength/2] = temp;
        }
    
	//do fft of hammingWindow
	m_FFT.process( 0, hammingWindowRe, hammingWindowIm, transfHammingWindowRe, transfHammingWindowIm );

		
	for (unsigned j=0; j<( m_FFTLength ); j++) 
	{
	    // perform thresholding
	    const double squaredBin = squaredModule( transfHammingWindowRe[ j ], transfHammingWindowIm[ j ]);
	    if (squaredBin <= squareThreshold) continue;
		
	    // Insert non-zero position indexes, doubled because they are floats
	    sk->is.push_back(j);
	    sk->js.push_back(k);

	    // take conjugate, normalise and add to array sparkernel
	    sk->real.push_back( transfHammingWindowRe[ j ]/m_FFTLength);
	    sk->imag.push_back(-transfHammingWindowIm[ j ]/m_FFTLength);
	}

    }

    delete [] hammingWindowRe;
    delete [] hammingWindowIm;
    delete [] transfHammingWindowRe;
    delete [] transfHammingWindowIm;

/*
    using std::cout;
    using std::endl;

    cout.precision(28);

    int n = sk->is.size();
    int w = 8;
    cout << "static unsigned int sk_i_" << m_uK << "_" << m_FFTLength << "[" << n << "] = {" << endl;
    for (int i = 0; i < n; ++i) {
        if (i % w == 0) cout << "    ";
        cout << sk->is[i];
        if (i + 1 < n) cout << ", ";
        if (i % w == w-1) cout << endl;
    };
    if (n % w != 0) cout << endl;
    cout << "};" << endl;

    n = sk->js.size();
    cout << "static unsigned int sk_j_" << m_uK << "_" << m_FFTLength << "[" << n << "] = {" << endl;
    for (int i = 0; i < n; ++i) {
        if (i % w == 0) cout << "    ";
        cout << sk->js[i];
        if (i + 1 < n) cout << ", ";
        if (i % w == w-1) cout << endl;
    };
    if (n % w != 0) cout << endl;
    cout << "};" << endl;

    w = 2;
    n = sk->real.size();
    cout << "static double sk_real_" << m_uK << "_" << m_FFTLength << "[" << n << "] = {" << endl;
    for (int i = 0; i < n; ++i) {
        if (i % w == 0) cout << "    ";
        cout << sk->real[i];
        if (i + 1 < n) cout << ", ";
        if (i % w == w-1) cout << endl;
    };
    if (n % w != 0) cout << endl;
    cout << "};" << endl;

    n = sk->imag.size();
    cout << "static double sk_imag_" << m_uK << "_" << m_FFTLength << "[" << n << "] = {" << endl;
    for (int i = 0; i < n; ++i) {
        if (i % w == 0) cout << "    ";
        cout << sk->imag[i];
        if (i + 1 < n) cout << ", ";
        if (i % w == w-1) cout << endl;
    };
    if (n % w != 0) cout << endl;
    cout << "};" << endl;

    cout << "static void push_" << m_uK << "_" << m_FFTLength << "(vector<unsigned int> &is, vector<unsigned int> &js, vector<double> &real, vector<double> &imag)" << endl;
    cout << "{\n    is.reserve(" << n << ");\n";
    cout << "    js.reserve(" << n << ");\n";
    cout << "    real.reserve(" << n << ");\n";
    cout << "    imag.reserve(" << n << ");\n";
    cout << "    for (int i = 0; i < " << n << "; ++i) {" << endl;
    cout << "        is.push_back(sk_i_" << m_uK << "_" << m_FFTLength << "[i]);" << endl;
    cout << "        js.push_back(sk_j_" << m_uK << "_" << m_FFTLength << "[i]);" << endl;
    cout << "        real.push_back(sk_real_" << m_uK << "_" << m_FFTLength << "[i]);" << endl;
    cout << "        imag.push_back(sk_imag_" << m_uK << "_" << m_FFTLength << "[i]);" << endl;
    cout << "    }" << endl;
    cout << "}" << endl;
*/
//    std::cerr << "done\n -> is: " << sk->is.size() << ", js: " << sk->js.size() << ", reals: " << sk->real.size() << ", imags: " << sk->imag.size() << std::endl;
    
    m_sparseKernel = sk;
    return;
}

//-----------------------------------------------------------------------------
double* ConstantQ::process( const double* fftdata )
{
    if (!m_sparseKernel) {
        std::cerr << "ERROR: ConstantQ::process: Sparse kernel has not been initialised" << std::endl;
        return m_CQdata;
    }

    SparseKernel *sk = m_sparseKernel;

    for (unsigned row=0; row<2*m_uK; row++) 
    {
	m_CQdata[ row ] = 0;
	m_CQdata[ row+1 ] = 0;
    }
    const unsigned *fftbin = &(sk->is[0]);
    const unsigned *cqbin  = &(sk->js[0]);
    const double   *real   = &(sk->real[0]);
    const double   *imag   = &(sk->imag[0]);
    const unsigned int sparseCells = sk->real.size();
	
    for (unsigned i = 0; i<sparseCells; i++)
    {
	const unsigned row = cqbin[i];
	const unsigned col = fftbin[i];
	const double & r1  = real[i];
	const double & i1  = imag[i];
	const double & r2  = fftdata[ (2*m_FFTLength) - 2*col - 2 ];
	const double & i2  = fftdata[ (2*m_FFTLength) - 2*col - 2 + 1 ];
	// add the multiplication
	m_CQdata[ 2*row  ] += (r1*r2 - i1*i2);
	m_CQdata[ 2*row+1] += (r1*i2 + i1*r2);
    }

    return m_CQdata;
}


void ConstantQ::initialise( CQConfig Config )
{
    m_FS = Config.FS;
    m_FMin = Config.min;		// min freq
    m_FMax = Config.max;		// max freq
    m_BPO = Config.BPO;		// bins per octave
    m_CQThresh = Config.CQThresh;// ConstantQ threshold for kernel generation

    m_dQ = 1/(pow(2,(1/(double)m_BPO))-1);	// Work out Q value for Filter bank
    m_uK = (unsigned int) ceil(m_BPO * log(m_FMax/m_FMin)/log(2.0));	// No. of constant Q bins

//    std::cerr << "ConstantQ::initialise: rate = " << m_FS << ", fmin = " << m_FMin << ", fmax = " << m_FMax << ", bpo = " << m_BPO << ", K = " << m_uK << ", Q = " << m_dQ << std::endl;

    // work out length of fft required for this constant Q Filter bank
    m_FFTLength = (int) pow(2, nextpow2(ceil( m_dQ*m_FS/m_FMin )));

    m_hop = m_FFTLength/8; // <------ hop size is window length divided by 32

//    std::cerr << "ConstantQ::initialise: -> fft length = " << m_FFTLength << ", hop = " << m_hop << std::endl;

    // allocate memory for cqdata
    m_CQdata = new double [2*m_uK];
}

void ConstantQ::deInitialise()
{
    delete [] m_CQdata;
    delete m_sparseKernel;
}

void ConstantQ::process(const double *FFTRe, const double* FFTIm,
                        double *CQRe, double *CQIm)
{
    if (!m_sparseKernel) {
        std::cerr << "ERROR: ConstantQ::process: Sparse kernel has not been initialised" << std::endl;
        return;
    }

    SparseKernel *sk = m_sparseKernel;

    for (unsigned row=0; row<m_uK; row++) 
    {
	CQRe[ row ] = 0;
	CQIm[ row ] = 0;
    }

    const unsigned *fftbin = &(sk->is[0]);
    const unsigned *cqbin  = &(sk->js[0]);
    const double   *real   = &(sk->real[0]);
    const double   *imag   = &(sk->imag[0]);
    const unsigned int sparseCells = sk->real.size();
	
    for (unsigned i = 0; i<sparseCells; i++)
    {
	const unsigned row = cqbin[i];
	const unsigned col = fftbin[i];
	const double & r1  = real[i];
	const double & i1  = imag[i];
	const double & r2  = FFTRe[ m_FFTLength - col - 1 ];
	const double & i2  = FFTIm[ m_FFTLength - col - 1 ];
	// add the multiplication
	CQRe[ row ] += (r1*r2 - i1*i2);
	CQIm[ row ] += (r1*i2 + i1*r2);
    }
}