Mercurial > hg > qm-dsp
view maths/KLDivergence.h @ 57:d241e7701c0c
* remove some debug output
author | cannam |
---|---|
date | Fri, 27 Feb 2009 13:07:22 +0000 |
parents | 499d438b52ba |
children | e5907ae6de17 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* QM DSP Library Centre for Digital Music, Queen Mary, University of London. This file copyright 2008 QMUL. All rights reserved. */ #ifndef KLDIVERGENCE_H #define KLDIVERGENCE_H #include <vector> using std::vector; /** * Helper methods for calculating Kullback-Leibler divergences. */ class KLDivergence { public: KLDivergence() { } ~KLDivergence() { } /** * Calculate a symmetrised Kullback-Leibler divergence of Gaussian * models based on mean and variance vectors. All input vectors * must be of equal size. */ double distanceGaussian(const vector<double> &means1, const vector<double> &variances1, const vector<double> &means2, const vector<double> &variances2); /** * Calculate a Kullback-Leibler divergence of two probability * distributions. Input vectors must be of equal size. If * symmetrised is true, the result will be the symmetrised * distance (equal to KL(d1, d2) + KL(d2, d1)). */ double distanceDistribution(const vector<double> &d1, const vector<double> &d2, bool symmetrised); }; #endif