view maths/pca/pca.c @ 209:ccd2019190bf msvc

Some MSVC fixes, including (temporarily, probably) renaming the FFT source file to avoid getting it mixed up with the Vamp SDK one in our object dir
author Chris Cannam
date Thu, 01 Feb 2018 16:34:08 +0000
parents e4a57215ddee
children fdaa63607c15
line wrap: on
line source
/*********************************/
/* Principal Components Analysis */
/*********************************/

/*********************************************************************/
/* Principal Components Analysis or the Karhunen-Loeve expansion is a
   classical method for dimensionality reduction or exploratory data
   analysis.  One reference among many is: F. Murtagh and A. Heck,
   Multivariate Data Analysis, Kluwer Academic, Dordrecht, 1987.

   Author:
   F. Murtagh
   Phone:        + 49 89 32006298 (work)
                 + 49 89 965307 (home)
   Earn/Bitnet:  fionn@dgaeso51,  fim@dgaipp1s,  murtagh@stsci
   Span:         esomc1::fionn
   Internet:     murtagh@scivax.stsci.edu
   
   F. Murtagh, Munich, 6 June 1989                                   */   
/*********************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include "pca.h"

#define SIGN(a, b) ( (b) < 0 ? -fabs(a) : fabs(a) )

/**  Variance-covariance matrix: creation  *****************************/

/* Create m * m covariance matrix from given n * m data matrix. */
void covcol(double** data, int n, int m, double** symmat)
{
double *mean;
int i, j, j1, j2;

/* Allocate storage for mean vector */

mean = (double*) malloc(m*sizeof(double));

/* Determine mean of column vectors of input data matrix */

for (j = 0; j < m; j++)
    {
    mean[j] = 0.0;
    for (i = 0; i < n; i++)
        {
        mean[j] += data[i][j];
        }
    mean[j] /= (double)n;
    }

/*
printf("\nMeans of column vectors:\n");
for (j = 0; j < m; j++)  {
    printf("%12.1f",mean[j]);  }   printf("\n");
 */

/* Center the column vectors. */

for (i = 0; i < n; i++)
    {
    for (j = 0; j < m; j++)
        {
        data[i][j] -= mean[j];
        }
    }

/* Calculate the m * m covariance matrix. */
for (j1 = 0; j1 < m; j1++)
    {
    for (j2 = j1; j2 < m; j2++)
        {
        symmat[j1][j2] = 0.0;
        for (i = 0; i < n; i++)
            {
            symmat[j1][j2] += data[i][j1] * data[i][j2];
            }
        symmat[j2][j1] = symmat[j1][j2];
        }
    }

free(mean);

return;

}

/**  Error handler  **************************************************/

void erhand(char* err_msg)
{
    fprintf(stderr,"Run-time error:\n");
    fprintf(stderr,"%s\n", err_msg);
    fprintf(stderr,"Exiting to system.\n");
    exit(1);
}


/**  Reduce a real, symmetric matrix to a symmetric, tridiag. matrix. */

/* Householder reduction of matrix a to tridiagonal form.
Algorithm: Martin et al., Num. Math. 11, 181-195, 1968.
Ref: Smith et al., Matrix Eigensystem Routines -- EISPACK Guide
Springer-Verlag, 1976, pp. 489-494.
W H Press et al., Numerical Recipes in C, Cambridge U P,
1988, pp. 373-374.  */
void tred2(double** a, int n, double* d, double* e)
{
	int l, k, j, i;
	double scale, hh, h, g, f;
	
	for (i = n-1; i >= 1; i--)
    {
		l = i - 1;
		h = scale = 0.0;
		if (l > 0)
		{
			for (k = 0; k <= l; k++)
				scale += fabs(a[i][k]);
			if (scale == 0.0)
				e[i] = a[i][l];
			else
			{
				for (k = 0; k <= l; k++)
				{
					a[i][k] /= scale;
					h += a[i][k] * a[i][k];
				}
				f = a[i][l];
				g = f>0 ? -sqrt(h) : sqrt(h);
				e[i] = scale * g;
				h -= f * g;
				a[i][l] = f - g;
				f = 0.0;
				for (j = 0; j <= l; j++)
				{
					a[j][i] = a[i][j]/h;
					g = 0.0;
					for (k = 0; k <= j; k++)
						g += a[j][k] * a[i][k];
					for (k = j+1; k <= l; k++)
						g += a[k][j] * a[i][k];
					e[j] = g / h;
					f += e[j] * a[i][j];
				}
				hh = f / (h + h);
				for (j = 0; j <= l; j++)
				{
					f = a[i][j];
					e[j] = g = e[j] - hh * f;
					for (k = 0; k <= j; k++)
						a[j][k] -= (f * e[k] + g * a[i][k]);
				}
			}
		}
		else
			e[i] = a[i][l];
		d[i] = h;
    }
	d[0] = 0.0;
	e[0] = 0.0;
	for (i = 0; i < n; i++)
    {
		l = i - 1;
		if (d[i])
		{
			for (j = 0; j <= l; j++)
			{
				g = 0.0;
				for (k = 0; k <= l; k++)
					g += a[i][k] * a[k][j];
				for (k = 0; k <= l; k++)
					a[k][j] -= g * a[k][i];
			}
		}
		d[i] = a[i][i];
		a[i][i] = 1.0;
		for (j = 0; j <= l; j++)
			a[j][i] = a[i][j] = 0.0;
    }
}

/**  Tridiagonal QL algorithm -- Implicit  **********************/

void tqli(double* d, double* e, int n, double** z)
{
	int m, l, iter, i, k;
	double s, r, p, g, f, dd, c, b;
	
	for (i = 1; i < n; i++)
		e[i-1] = e[i];
	e[n-1] = 0.0;
	for (l = 0; l < n; l++)
    {
		iter = 0;
		do
		{
			for (m = l; m < n-1; m++)
			{
				dd = fabs(d[m]) + fabs(d[m+1]);
				if (fabs(e[m]) + dd == dd) break;
			}
			if (m != l)
			{
				if (iter++ == 30) erhand("No convergence in TLQI.");
				g = (d[l+1] - d[l]) / (2.0 * e[l]);
				r = sqrt((g * g) + 1.0);
				g = d[m] - d[l] + e[l] / (g + SIGN(r, g));
				s = c = 1.0;
				p = 0.0;
				for (i = m-1; i >= l; i--)
				{
					f = s * e[i];
					b = c * e[i];
					if (fabs(f) >= fabs(g))
                    {
						c = g / f;
						r = sqrt((c * c) + 1.0);
						e[i+1] = f * r;
						c *= (s = 1.0/r);
                    }
					else
                    {
						s = f / g;
						r = sqrt((s * s) + 1.0);
						e[i+1] = g * r;
						s *= (c = 1.0/r);
                    }
					g = d[i+1] - p;
					r = (d[i] - g) * s + 2.0 * c * b;
					p = s * r;
					d[i+1] = g + p;
					g = c * r - b;
					for (k = 0; k < n; k++)
					{
						f = z[k][i+1];
						z[k][i+1] = s * z[k][i] + c * f;
						z[k][i] = c * z[k][i] - s * f;
					}
				}
				d[l] = d[l] - p;
				e[l] = g;
				e[m] = 0.0;
			}
		}  while (m != l);
	}
}

/* In place projection onto basis vectors */
void pca_project(double** data, int n, int m, int ncomponents)
{
	int  i, j, k, k2;
	double  **symmat, /* **symmat2, */ *evals, *interm;
	
	//TODO: assert ncomponents < m
	
	symmat = (double**) malloc(m*sizeof(double*));
	for (i = 0; i < m; i++)
		symmat[i] = (double*) malloc(m*sizeof(double));
		
	covcol(data, n, m, symmat);
	
	/*********************************************************************
		Eigen-reduction
		**********************************************************************/
	
    /* Allocate storage for dummy and new vectors. */
    evals = (double*) malloc(m*sizeof(double));     /* Storage alloc. for vector of eigenvalues */
    interm = (double*) malloc(m*sizeof(double));    /* Storage alloc. for 'intermediate' vector */
    //MALLOC_ARRAY(symmat2,m,m,double);    
	//for (i = 0; i < m; i++) {
	//	for (j = 0; j < m; j++) {
	//		symmat2[i][j] = symmat[i][j]; /* Needed below for col. projections */
	//	}
	//}
    tred2(symmat, m, evals, interm);  /* Triangular decomposition */
tqli(evals, interm, m, symmat);   /* Reduction of sym. trid. matrix */
/* evals now contains the eigenvalues,
columns of symmat now contain the associated eigenvectors. */	

/*
	printf("\nEigenvalues:\n");
	for (j = m-1; j >= 0; j--) {
		printf("%18.5f\n", evals[j]); }
	printf("\n(Eigenvalues should be strictly positive; limited\n");
	printf("precision machine arithmetic may affect this.\n");
	printf("Eigenvalues are often expressed as cumulative\n");
	printf("percentages, representing the 'percentage variance\n");
	printf("explained' by the associated axis or principal component.)\n");
	
	printf("\nEigenvectors:\n");
	printf("(First three; their definition in terms of original vbes.)\n");
	for (j = 0; j < m; j++) {
		for (i = 1; i <= 3; i++)  {
			printf("%12.4f", symmat[j][m-i]);  }
		printf("\n");  }
 */

/* Form projections of row-points on prin. components. */
/* Store in 'data', overwriting original data. */
for (i = 0; i < n; i++) {
	for (j = 0; j < m; j++) {
		interm[j] = data[i][j]; }   /* data[i][j] will be overwritten */
        for (k = 0; k < ncomponents; k++) {
			data[i][k] = 0.0;
			for (k2 = 0; k2 < m; k2++) {
				data[i][k] += interm[k2] * symmat[k2][m-k-1]; }
        }
}

/*	
printf("\nProjections of row-points on first 3 prin. comps.:\n");
 for (i = 0; i < n; i++) {
	 for (j = 0; j < 3; j++)  {
		 printf("%12.4f", data[i][j]);  }
	 printf("\n");  }
 */

/* Form projections of col.-points on first three prin. components. */
/* Store in 'symmat2', overwriting what was stored in this. */
//for (j = 0; j < m; j++) {
//	 for (k = 0; k < m; k++) {
//		 interm[k] = symmat2[j][k]; }  /*symmat2[j][k] will be overwritten*/
//  for (i = 0; i < 3; i++) {
//	symmat2[j][i] = 0.0;
//		for (k2 = 0; k2 < m; k2++) {
//			symmat2[j][i] += interm[k2] * symmat[k2][m-i-1]; }
//		if (evals[m-i-1] > 0.0005)   /* Guard against zero eigenvalue */
//			symmat2[j][i] /= sqrt(evals[m-i-1]);   /* Rescale */
//		else
//			symmat2[j][i] = 0.0;    /* Standard kludge */
//    }
// }

/*
 printf("\nProjections of column-points on first 3 prin. comps.:\n");
 for (j = 0; j < m; j++) {
	 for (k = 0; k < 3; k++)  {
		 printf("%12.4f", symmat2[j][k]);  }
	 printf("\n");  }
	*/


for (i = 0; i < m; i++)
	free(symmat[i]);
free(symmat);
//FREE_ARRAY(symmat2,m);
free(evals);
free(interm);

}