view ext/clapack/src/dtrtri.c @ 209:ccd2019190bf msvc

Some MSVC fixes, including (temporarily, probably) renaming the FFT source file to avoid getting it mixed up with the Vamp SDK one in our object dir
author Chris Cannam
date Thu, 01 Feb 2018 16:34:08 +0000
parents 45330e0d2819
children
line wrap: on
line source
/* dtrtri.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__2 = 2;
static doublereal c_b18 = 1.;
static doublereal c_b22 = -1.;

/* Subroutine */ int dtrtri_(char *uplo, char *diag, integer *n, doublereal *
	a, integer *lda, integer *info)
{
    /* System generated locals */
    address a__1[2];
    integer a_dim1, a_offset, i__1, i__2[2], i__3, i__4, i__5;
    char ch__1[2];

    /* Builtin functions */
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    integer j, jb, nb, nn;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int dtrmm_(char *, char *, char *, char *, 
	    integer *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *), dtrsm_(
	    char *, char *, char *, char *, integer *, integer *, doublereal *
, doublereal *, integer *, doublereal *, integer *);
    logical upper;
    extern /* Subroutine */ int dtrti2_(char *, char *, integer *, doublereal 
	    *, integer *, integer *), xerbla_(char *, integer 
	    *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    logical nounit;


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DTRTRI computes the inverse of a real upper or lower triangular */
/*  matrix A. */

/*  This is the Level 3 BLAS version of the algorithm. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  A is upper triangular; */
/*          = 'L':  A is lower triangular. */

/*  DIAG    (input) CHARACTER*1 */
/*          = 'N':  A is non-unit triangular; */
/*          = 'U':  A is unit triangular. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/*          On entry, the triangular matrix A.  If UPLO = 'U', the */
/*          leading N-by-N upper triangular part of the array A contains */
/*          the upper triangular matrix, and the strictly lower */
/*          triangular part of A is not referenced.  If UPLO = 'L', the */
/*          leading N-by-N lower triangular part of the array A contains */
/*          the lower triangular matrix, and the strictly upper */
/*          triangular part of A is not referenced.  If DIAG = 'U', the */
/*          diagonal elements of A are also not referenced and are */
/*          assumed to be 1. */
/*          On exit, the (triangular) inverse of the original matrix, in */
/*          the same storage format. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -i, the i-th argument had an illegal value */
/*          > 0: if INFO = i, A(i,i) is exactly zero.  The triangular */
/*               matrix is singular and its inverse can not be computed. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    nounit = lsame_(diag, "N");
    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (! nounit && ! lsame_(diag, "U")) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*lda < max(1,*n)) {
	*info = -5;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DTRTRI", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Check for singularity if non-unit. */

    if (nounit) {
	i__1 = *n;
	for (*info = 1; *info <= i__1; ++(*info)) {
	    if (a[*info + *info * a_dim1] == 0.) {
		return 0;
	    }
/* L10: */
	}
	*info = 0;
    }

/*     Determine the block size for this environment. */

/* Writing concatenation */
    i__2[0] = 1, a__1[0] = uplo;
    i__2[1] = 1, a__1[1] = diag;
    s_cat(ch__1, a__1, i__2, &c__2, (ftnlen)2);
    nb = ilaenv_(&c__1, "DTRTRI", ch__1, n, &c_n1, &c_n1, &c_n1);
    if (nb <= 1 || nb >= *n) {

/*        Use unblocked code */

	dtrti2_(uplo, diag, n, &a[a_offset], lda, info);
    } else {

/*        Use blocked code */

	if (upper) {

/*           Compute inverse of upper triangular matrix */

	    i__1 = *n;
	    i__3 = nb;
	    for (j = 1; i__3 < 0 ? j >= i__1 : j <= i__1; j += i__3) {
/* Computing MIN */
		i__4 = nb, i__5 = *n - j + 1;
		jb = min(i__4,i__5);

/*              Compute rows 1:j-1 of current block column */

		i__4 = j - 1;
		dtrmm_("Left", "Upper", "No transpose", diag, &i__4, &jb, &
			c_b18, &a[a_offset], lda, &a[j * a_dim1 + 1], lda);
		i__4 = j - 1;
		dtrsm_("Right", "Upper", "No transpose", diag, &i__4, &jb, &
			c_b22, &a[j + j * a_dim1], lda, &a[j * a_dim1 + 1], 
			lda);

/*              Compute inverse of current diagonal block */

		dtrti2_("Upper", diag, &jb, &a[j + j * a_dim1], lda, info);
/* L20: */
	    }
	} else {

/*           Compute inverse of lower triangular matrix */

	    nn = (*n - 1) / nb * nb + 1;
	    i__3 = -nb;
	    for (j = nn; i__3 < 0 ? j >= 1 : j <= 1; j += i__3) {
/* Computing MIN */
		i__1 = nb, i__4 = *n - j + 1;
		jb = min(i__1,i__4);
		if (j + jb <= *n) {

/*                 Compute rows j+jb:n of current block column */

		    i__1 = *n - j - jb + 1;
		    dtrmm_("Left", "Lower", "No transpose", diag, &i__1, &jb, 
			    &c_b18, &a[j + jb + (j + jb) * a_dim1], lda, &a[j 
			    + jb + j * a_dim1], lda);
		    i__1 = *n - j - jb + 1;
		    dtrsm_("Right", "Lower", "No transpose", diag, &i__1, &jb, 
			     &c_b22, &a[j + j * a_dim1], lda, &a[j + jb + j * 
			    a_dim1], lda);
		}

/*              Compute inverse of current diagonal block */

		dtrti2_("Lower", diag, &jb, &a[j + j * a_dim1], lda, info);
/* L30: */
	    }
	}
    }

    return 0;

/*     End of DTRTRI */

} /* dtrtri_ */