view ext/clapack/src/dgetf2.c @ 209:ccd2019190bf msvc

Some MSVC fixes, including (temporarily, probably) renaming the FFT source file to avoid getting it mixed up with the Vamp SDK one in our object dir
author Chris Cannam
date Thu, 01 Feb 2018 16:34:08 +0000
parents 45330e0d2819
children
line wrap: on
line source
/* dgetf2.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static integer c__1 = 1;
static doublereal c_b8 = -1.;

/* Subroutine */ int dgetf2_(integer *m, integer *n, doublereal *a, integer *
	lda, integer *ipiv, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3;
    doublereal d__1;

    /* Local variables */
    integer i__, j, jp;
    extern /* Subroutine */ int dger_(integer *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *), dscal_(integer *, doublereal *, doublereal *, integer 
	    *);
    doublereal sfmin;
    extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    extern doublereal dlamch_(char *);
    extern integer idamax_(integer *, doublereal *, integer *);
    extern /* Subroutine */ int xerbla_(char *, integer *);


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DGETF2 computes an LU factorization of a general m-by-n matrix A */
/*  using partial pivoting with row interchanges. */

/*  The factorization has the form */
/*     A = P * L * U */
/*  where P is a permutation matrix, L is lower triangular with unit */
/*  diagonal elements (lower trapezoidal if m > n), and U is upper */
/*  triangular (upper trapezoidal if m < n). */

/*  This is the right-looking Level 2 BLAS version of the algorithm. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A.  N >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/*          On entry, the m by n matrix to be factored. */
/*          On exit, the factors L and U from the factorization */
/*          A = P*L*U; the unit diagonal elements of L are not stored. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,M). */

/*  IPIV    (output) INTEGER array, dimension (min(M,N)) */
/*          The pivot indices; for 1 <= i <= min(M,N), row i of the */
/*          matrix was interchanged with row IPIV(i). */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -k, the k-th argument had an illegal value */
/*          > 0: if INFO = k, U(k,k) is exactly zero. The factorization */
/*               has been completed, but the factor U is exactly */
/*               singular, and division by zero will occur if it is used */
/*               to solve a system of equations. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --ipiv;

    /* Function Body */
    *info = 0;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < max(1,*m)) {
	*info = -4;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DGETF2", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*m == 0 || *n == 0) {
	return 0;
    }

/*     Compute machine safe minimum */

    sfmin = dlamch_("S");

    i__1 = min(*m,*n);
    for (j = 1; j <= i__1; ++j) {

/*        Find pivot and test for singularity. */

	i__2 = *m - j + 1;
	jp = j - 1 + idamax_(&i__2, &a[j + j * a_dim1], &c__1);
	ipiv[j] = jp;
	if (a[jp + j * a_dim1] != 0.) {

/*           Apply the interchange to columns 1:N. */

	    if (jp != j) {
		dswap_(n, &a[j + a_dim1], lda, &a[jp + a_dim1], lda);
	    }

/*           Compute elements J+1:M of J-th column. */

	    if (j < *m) {
		if ((d__1 = a[j + j * a_dim1], abs(d__1)) >= sfmin) {
		    i__2 = *m - j;
		    d__1 = 1. / a[j + j * a_dim1];
		    dscal_(&i__2, &d__1, &a[j + 1 + j * a_dim1], &c__1);
		} else {
		    i__2 = *m - j;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			a[j + i__ + j * a_dim1] /= a[j + j * a_dim1];
/* L20: */
		    }
		}
	    }

	} else if (*info == 0) {

	    *info = j;
	}

	if (j < min(*m,*n)) {

/*           Update trailing submatrix. */

	    i__2 = *m - j;
	    i__3 = *n - j;
	    dger_(&i__2, &i__3, &c_b8, &a[j + 1 + j * a_dim1], &c__1, &a[j + (
		    j + 1) * a_dim1], lda, &a[j + 1 + (j + 1) * a_dim1], lda);
	}
/* L10: */
    }
    return 0;

/*     End of DGETF2 */

} /* dgetf2_ */