view ext/cblas/src/dtrsm.c @ 209:ccd2019190bf msvc

Some MSVC fixes, including (temporarily, probably) renaming the FFT source file to avoid getting it mixed up with the Vamp SDK one in our object dir
author Chris Cannam
date Thu, 01 Feb 2018 16:34:08 +0000
parents 45330e0d2819
children
line wrap: on
line source
/* dtrsm.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Subroutine */ int dtrsm_(char *side, char *uplo, char *transa, char *diag, 
	integer *m, integer *n, doublereal *alpha, doublereal *a, integer *
	lda, doublereal *b, integer *ldb)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;

    /* Local variables */
    integer i__, j, k, info;
    doublereal temp;
    logical lside;
    extern logical lsame_(char *, char *);
    integer nrowa;
    logical upper;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    logical nounit;

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DTRSM  solves one of the matrix equations */

/*     op( A )*X = alpha*B,   or   X*op( A ) = alpha*B, */

/*  where alpha is a scalar, X and B are m by n matrices, A is a unit, or */
/*  non-unit,  upper or lower triangular matrix  and  op( A )  is one  of */

/*     op( A ) = A   or   op( A ) = A'. */

/*  The matrix X is overwritten on B. */

/*  Arguments */
/*  ========== */

/*  SIDE   - CHARACTER*1. */
/*           On entry, SIDE specifies whether op( A ) appears on the left */
/*           or right of X as follows: */

/*              SIDE = 'L' or 'l'   op( A )*X = alpha*B. */

/*              SIDE = 'R' or 'r'   X*op( A ) = alpha*B. */

/*           Unchanged on exit. */

/*  UPLO   - CHARACTER*1. */
/*           On entry, UPLO specifies whether the matrix A is an upper or */
/*           lower triangular matrix as follows: */

/*              UPLO = 'U' or 'u'   A is an upper triangular matrix. */

/*              UPLO = 'L' or 'l'   A is a lower triangular matrix. */

/*           Unchanged on exit. */

/*  TRANSA - CHARACTER*1. */
/*           On entry, TRANSA specifies the form of op( A ) to be used in */
/*           the matrix multiplication as follows: */

/*              TRANSA = 'N' or 'n'   op( A ) = A. */

/*              TRANSA = 'T' or 't'   op( A ) = A'. */

/*              TRANSA = 'C' or 'c'   op( A ) = A'. */

/*           Unchanged on exit. */

/*  DIAG   - CHARACTER*1. */
/*           On entry, DIAG specifies whether or not A is unit triangular */
/*           as follows: */

/*              DIAG = 'U' or 'u'   A is assumed to be unit triangular. */

/*              DIAG = 'N' or 'n'   A is not assumed to be unit */
/*                                  triangular. */

/*           Unchanged on exit. */

/*  M      - INTEGER. */
/*           On entry, M specifies the number of rows of B. M must be at */
/*           least zero. */
/*           Unchanged on exit. */

/*  N      - INTEGER. */
/*           On entry, N specifies the number of columns of B.  N must be */
/*           at least zero. */
/*           Unchanged on exit. */

/*  ALPHA  - DOUBLE PRECISION. */
/*           On entry,  ALPHA specifies the scalar  alpha. When  alpha is */
/*           zero then  A is not referenced and  B need not be set before */
/*           entry. */
/*           Unchanged on exit. */

/*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m */
/*           when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'. */
/*           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k */
/*           upper triangular part of the array  A must contain the upper */
/*           triangular matrix  and the strictly lower triangular part of */
/*           A is not referenced. */
/*           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k */
/*           lower triangular part of the array  A must contain the lower */
/*           triangular matrix  and the strictly upper triangular part of */
/*           A is not referenced. */
/*           Note that when  DIAG = 'U' or 'u',  the diagonal elements of */
/*           A  are not referenced either,  but are assumed to be  unity. */
/*           Unchanged on exit. */

/*  LDA    - INTEGER. */
/*           On entry, LDA specifies the first dimension of A as declared */
/*           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then */
/*           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r' */
/*           then LDA must be at least max( 1, n ). */
/*           Unchanged on exit. */

/*  B      - DOUBLE PRECISION array of DIMENSION ( LDB, n ). */
/*           Before entry,  the leading  m by n part of the array  B must */
/*           contain  the  right-hand  side  matrix  B,  and  on exit  is */
/*           overwritten by the solution matrix  X. */

/*  LDB    - INTEGER. */
/*           On entry, LDB specifies the first dimension of B as declared */
/*           in  the  calling  (sub)  program.   LDB  must  be  at  least */
/*           max( 1, m ). */
/*           Unchanged on exit. */


/*  Level 3 Blas routine. */


/*  -- Written on 8-February-1989. */
/*     Jack Dongarra, Argonne National Laboratory. */
/*     Iain Duff, AERE Harwell. */
/*     Jeremy Du Croz, Numerical Algorithms Group Ltd. */
/*     Sven Hammarling, Numerical Algorithms Group Ltd. */


/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Parameters .. */
/*     .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;

    /* Function Body */
    lside = lsame_(side, "L");
    if (lside) {
	nrowa = *m;
    } else {
	nrowa = *n;
    }
    nounit = lsame_(diag, "N");
    upper = lsame_(uplo, "U");

    info = 0;
    if (! lside && ! lsame_(side, "R")) {
	info = 1;
    } else if (! upper && ! lsame_(uplo, "L")) {
	info = 2;
    } else if (! lsame_(transa, "N") && ! lsame_(transa, 
	     "T") && ! lsame_(transa, "C")) {
	info = 3;
    } else if (! lsame_(diag, "U") && ! lsame_(diag, 
	    "N")) {
	info = 4;
    } else if (*m < 0) {
	info = 5;
    } else if (*n < 0) {
	info = 6;
    } else if (*lda < max(1,nrowa)) {
	info = 9;
    } else if (*ldb < max(1,*m)) {
	info = 11;
    }
    if (info != 0) {
	xerbla_("DTRSM ", &info);
	return 0;
    }

/*     Quick return if possible. */

    if (*m == 0 || *n == 0) {
	return 0;
    }

/*     And when  alpha.eq.zero. */

    if (*alpha == 0.) {
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = *m;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		b[i__ + j * b_dim1] = 0.;
/* L10: */
	    }
/* L20: */
	}
	return 0;
    }

/*     Start the operations. */

    if (lside) {
	if (lsame_(transa, "N")) {

/*           Form  B := alpha*inv( A )*B. */

	    if (upper) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    if (*alpha != 1.) {
			i__2 = *m;
			for (i__ = 1; i__ <= i__2; ++i__) {
			    b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1]
				    ;
/* L30: */
			}
		    }
		    for (k = *m; k >= 1; --k) {
			if (b[k + j * b_dim1] != 0.) {
			    if (nounit) {
				b[k + j * b_dim1] /= a[k + k * a_dim1];
			    }
			    i__2 = k - 1;
			    for (i__ = 1; i__ <= i__2; ++i__) {
				b[i__ + j * b_dim1] -= b[k + j * b_dim1] * a[
					i__ + k * a_dim1];
/* L40: */
			    }
			}
/* L50: */
		    }
/* L60: */
		}
	    } else {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    if (*alpha != 1.) {
			i__2 = *m;
			for (i__ = 1; i__ <= i__2; ++i__) {
			    b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1]
				    ;
/* L70: */
			}
		    }
		    i__2 = *m;
		    for (k = 1; k <= i__2; ++k) {
			if (b[k + j * b_dim1] != 0.) {
			    if (nounit) {
				b[k + j * b_dim1] /= a[k + k * a_dim1];
			    }
			    i__3 = *m;
			    for (i__ = k + 1; i__ <= i__3; ++i__) {
				b[i__ + j * b_dim1] -= b[k + j * b_dim1] * a[
					i__ + k * a_dim1];
/* L80: */
			    }
			}
/* L90: */
		    }
/* L100: */
		}
	    }
	} else {

/*           Form  B := alpha*inv( A' )*B. */

	    if (upper) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = *m;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			temp = *alpha * b[i__ + j * b_dim1];
			i__3 = i__ - 1;
			for (k = 1; k <= i__3; ++k) {
			    temp -= a[k + i__ * a_dim1] * b[k + j * b_dim1];
/* L110: */
			}
			if (nounit) {
			    temp /= a[i__ + i__ * a_dim1];
			}
			b[i__ + j * b_dim1] = temp;
/* L120: */
		    }
/* L130: */
		}
	    } else {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    for (i__ = *m; i__ >= 1; --i__) {
			temp = *alpha * b[i__ + j * b_dim1];
			i__2 = *m;
			for (k = i__ + 1; k <= i__2; ++k) {
			    temp -= a[k + i__ * a_dim1] * b[k + j * b_dim1];
/* L140: */
			}
			if (nounit) {
			    temp /= a[i__ + i__ * a_dim1];
			}
			b[i__ + j * b_dim1] = temp;
/* L150: */
		    }
/* L160: */
		}
	    }
	}
    } else {
	if (lsame_(transa, "N")) {

/*           Form  B := alpha*B*inv( A ). */

	    if (upper) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    if (*alpha != 1.) {
			i__2 = *m;
			for (i__ = 1; i__ <= i__2; ++i__) {
			    b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1]
				    ;
/* L170: */
			}
		    }
		    i__2 = j - 1;
		    for (k = 1; k <= i__2; ++k) {
			if (a[k + j * a_dim1] != 0.) {
			    i__3 = *m;
			    for (i__ = 1; i__ <= i__3; ++i__) {
				b[i__ + j * b_dim1] -= a[k + j * a_dim1] * b[
					i__ + k * b_dim1];
/* L180: */
			    }
			}
/* L190: */
		    }
		    if (nounit) {
			temp = 1. / a[j + j * a_dim1];
			i__2 = *m;
			for (i__ = 1; i__ <= i__2; ++i__) {
			    b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];
/* L200: */
			}
		    }
/* L210: */
		}
	    } else {
		for (j = *n; j >= 1; --j) {
		    if (*alpha != 1.) {
			i__1 = *m;
			for (i__ = 1; i__ <= i__1; ++i__) {
			    b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1]
				    ;
/* L220: */
			}
		    }
		    i__1 = *n;
		    for (k = j + 1; k <= i__1; ++k) {
			if (a[k + j * a_dim1] != 0.) {
			    i__2 = *m;
			    for (i__ = 1; i__ <= i__2; ++i__) {
				b[i__ + j * b_dim1] -= a[k + j * a_dim1] * b[
					i__ + k * b_dim1];
/* L230: */
			    }
			}
/* L240: */
		    }
		    if (nounit) {
			temp = 1. / a[j + j * a_dim1];
			i__1 = *m;
			for (i__ = 1; i__ <= i__1; ++i__) {
			    b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];
/* L250: */
			}
		    }
/* L260: */
		}
	    }
	} else {

/*           Form  B := alpha*B*inv( A' ). */

	    if (upper) {
		for (k = *n; k >= 1; --k) {
		    if (nounit) {
			temp = 1. / a[k + k * a_dim1];
			i__1 = *m;
			for (i__ = 1; i__ <= i__1; ++i__) {
			    b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];
/* L270: */
			}
		    }
		    i__1 = k - 1;
		    for (j = 1; j <= i__1; ++j) {
			if (a[j + k * a_dim1] != 0.) {
			    temp = a[j + k * a_dim1];
			    i__2 = *m;
			    for (i__ = 1; i__ <= i__2; ++i__) {
				b[i__ + j * b_dim1] -= temp * b[i__ + k * 
					b_dim1];
/* L280: */
			    }
			}
/* L290: */
		    }
		    if (*alpha != 1.) {
			i__1 = *m;
			for (i__ = 1; i__ <= i__1; ++i__) {
			    b[i__ + k * b_dim1] = *alpha * b[i__ + k * b_dim1]
				    ;
/* L300: */
			}
		    }
/* L310: */
		}
	    } else {
		i__1 = *n;
		for (k = 1; k <= i__1; ++k) {
		    if (nounit) {
			temp = 1. / a[k + k * a_dim1];
			i__2 = *m;
			for (i__ = 1; i__ <= i__2; ++i__) {
			    b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];
/* L320: */
			}
		    }
		    i__2 = *n;
		    for (j = k + 1; j <= i__2; ++j) {
			if (a[j + k * a_dim1] != 0.) {
			    temp = a[j + k * a_dim1];
			    i__3 = *m;
			    for (i__ = 1; i__ <= i__3; ++i__) {
				b[i__ + j * b_dim1] -= temp * b[i__ + k * 
					b_dim1];
/* L330: */
			    }
			}
/* L340: */
		    }
		    if (*alpha != 1.) {
			i__2 = *m;
			for (i__ = 1; i__ <= i__2; ++i__) {
			    b[i__ + k * b_dim1] = *alpha * b[i__ + k * b_dim1]
				    ;
/* L350: */
			}
		    }
/* L360: */
		}
	    }
	}
    }

    return 0;

/*     End of DTRSM . */

} /* dtrsm_ */