view ext/cblas/src/dgemm.c @ 209:ccd2019190bf msvc

Some MSVC fixes, including (temporarily, probably) renaming the FFT source file to avoid getting it mixed up with the Vamp SDK one in our object dir
author Chris Cannam
date Thu, 01 Feb 2018 16:34:08 +0000
parents 45330e0d2819
children
line wrap: on
line source
/* dgemm.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Subroutine */ int dgemm_(char *transa, char *transb, integer *m, integer *
	n, integer *k, doublereal *alpha, doublereal *a, integer *lda, 
	doublereal *b, integer *ldb, doublereal *beta, doublereal *c__, 
	integer *ldc)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, 
	    i__3;

    /* Local variables */
    integer i__, j, l, info;
    logical nota, notb;
    doublereal temp;
    integer ncola;
    extern logical lsame_(char *, char *);
    integer nrowa, nrowb;
    extern /* Subroutine */ int xerbla_(char *, integer *);

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DGEMM  performs one of the matrix-matrix operations */

/*     C := alpha*op( A )*op( B ) + beta*C, */

/*  where  op( X ) is one of */

/*     op( X ) = X   or   op( X ) = X', */

/*  alpha and beta are scalars, and A, B and C are matrices, with op( A ) */
/*  an m by k matrix,  op( B )  a  k by n matrix and  C an m by n matrix. */

/*  Arguments */
/*  ========== */

/*  TRANSA - CHARACTER*1. */
/*           On entry, TRANSA specifies the form of op( A ) to be used in */
/*           the matrix multiplication as follows: */

/*              TRANSA = 'N' or 'n',  op( A ) = A. */

/*              TRANSA = 'T' or 't',  op( A ) = A'. */

/*              TRANSA = 'C' or 'c',  op( A ) = A'. */

/*           Unchanged on exit. */

/*  TRANSB - CHARACTER*1. */
/*           On entry, TRANSB specifies the form of op( B ) to be used in */
/*           the matrix multiplication as follows: */

/*              TRANSB = 'N' or 'n',  op( B ) = B. */

/*              TRANSB = 'T' or 't',  op( B ) = B'. */

/*              TRANSB = 'C' or 'c',  op( B ) = B'. */

/*           Unchanged on exit. */

/*  M      - INTEGER. */
/*           On entry,  M  specifies  the number  of rows  of the  matrix */
/*           op( A )  and of the  matrix  C.  M  must  be at least  zero. */
/*           Unchanged on exit. */

/*  N      - INTEGER. */
/*           On entry,  N  specifies the number  of columns of the matrix */
/*           op( B ) and the number of columns of the matrix C. N must be */
/*           at least zero. */
/*           Unchanged on exit. */

/*  K      - INTEGER. */
/*           On entry,  K  specifies  the number of columns of the matrix */
/*           op( A ) and the number of rows of the matrix op( B ). K must */
/*           be at least  zero. */
/*           Unchanged on exit. */

/*  ALPHA  - DOUBLE PRECISION. */
/*           On entry, ALPHA specifies the scalar alpha. */
/*           Unchanged on exit. */

/*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is */
/*           k  when  TRANSA = 'N' or 'n',  and is  m  otherwise. */
/*           Before entry with  TRANSA = 'N' or 'n',  the leading  m by k */
/*           part of the array  A  must contain the matrix  A,  otherwise */
/*           the leading  k by m  part of the array  A  must contain  the */
/*           matrix A. */
/*           Unchanged on exit. */

/*  LDA    - INTEGER. */
/*           On entry, LDA specifies the first dimension of A as declared */
/*           in the calling (sub) program. When  TRANSA = 'N' or 'n' then */
/*           LDA must be at least  max( 1, m ), otherwise  LDA must be at */
/*           least  max( 1, k ). */
/*           Unchanged on exit. */

/*  B      - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is */
/*           n  when  TRANSB = 'N' or 'n',  and is  k  otherwise. */
/*           Before entry with  TRANSB = 'N' or 'n',  the leading  k by n */
/*           part of the array  B  must contain the matrix  B,  otherwise */
/*           the leading  n by k  part of the array  B  must contain  the */
/*           matrix B. */
/*           Unchanged on exit. */

/*  LDB    - INTEGER. */
/*           On entry, LDB specifies the first dimension of B as declared */
/*           in the calling (sub) program. When  TRANSB = 'N' or 'n' then */
/*           LDB must be at least  max( 1, k ), otherwise  LDB must be at */
/*           least  max( 1, n ). */
/*           Unchanged on exit. */

/*  BETA   - DOUBLE PRECISION. */
/*           On entry,  BETA  specifies the scalar  beta.  When  BETA  is */
/*           supplied as zero then C need not be set on input. */
/*           Unchanged on exit. */

/*  C      - DOUBLE PRECISION array of DIMENSION ( LDC, n ). */
/*           Before entry, the leading  m by n  part of the array  C must */
/*           contain the matrix  C,  except when  beta  is zero, in which */
/*           case C need not be set on entry. */
/*           On exit, the array  C  is overwritten by the  m by n  matrix */
/*           ( alpha*op( A )*op( B ) + beta*C ). */

/*  LDC    - INTEGER. */
/*           On entry, LDC specifies the first dimension of C as declared */
/*           in  the  calling  (sub)  program.   LDC  must  be  at  least */
/*           max( 1, m ). */
/*           Unchanged on exit. */


/*  Level 3 Blas routine. */

/*  -- Written on 8-February-1989. */
/*     Jack Dongarra, Argonne National Laboratory. */
/*     Iain Duff, AERE Harwell. */
/*     Jeremy Du Croz, Numerical Algorithms Group Ltd. */
/*     Sven Hammarling, Numerical Algorithms Group Ltd. */


/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Parameters .. */
/*     .. */

/*     Set  NOTA  and  NOTB  as  true if  A  and  B  respectively are not */
/*     transposed and set  NROWA, NCOLA and  NROWB  as the number of rows */
/*     and  columns of  A  and the  number of  rows  of  B  respectively. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    c_dim1 = *ldc;
    c_offset = 1 + c_dim1;
    c__ -= c_offset;

    /* Function Body */
    nota = lsame_(transa, "N");
    notb = lsame_(transb, "N");
    if (nota) {
	nrowa = *m;
	ncola = *k;
    } else {
	nrowa = *k;
	ncola = *m;
    }
    if (notb) {
	nrowb = *k;
    } else {
	nrowb = *n;
    }

/*     Test the input parameters. */

    info = 0;
    if (! nota && ! lsame_(transa, "C") && ! lsame_(
	    transa, "T")) {
	info = 1;
    } else if (! notb && ! lsame_(transb, "C") && ! 
	    lsame_(transb, "T")) {
	info = 2;
    } else if (*m < 0) {
	info = 3;
    } else if (*n < 0) {
	info = 4;
    } else if (*k < 0) {
	info = 5;
    } else if (*lda < max(1,nrowa)) {
	info = 8;
    } else if (*ldb < max(1,nrowb)) {
	info = 10;
    } else if (*ldc < max(1,*m)) {
	info = 13;
    }
    if (info != 0) {
	xerbla_("DGEMM ", &info);
	return 0;
    }

/*     Quick return if possible. */

    if (*m == 0 || *n == 0 || (*alpha == 0. || *k == 0) && *beta == 1.) {
	return 0;
    }

/*     And if  alpha.eq.zero. */

    if (*alpha == 0.) {
	if (*beta == 0.) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *m;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    c__[i__ + j * c_dim1] = 0.;
/* L10: */
		}
/* L20: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *m;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
/* L30: */
		}
/* L40: */
	    }
	}
	return 0;
    }

/*     Start the operations. */

    if (notb) {
	if (nota) {

/*           Form  C := alpha*A*B + beta*C. */

	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		if (*beta == 0.) {
		    i__2 = *m;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			c__[i__ + j * c_dim1] = 0.;
/* L50: */
		    }
		} else if (*beta != 1.) {
		    i__2 = *m;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
/* L60: */
		    }
		}
		i__2 = *k;
		for (l = 1; l <= i__2; ++l) {
		    if (b[l + j * b_dim1] != 0.) {
			temp = *alpha * b[l + j * b_dim1];
			i__3 = *m;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    c__[i__ + j * c_dim1] += temp * a[i__ + l * 
				    a_dim1];
/* L70: */
			}
		    }
/* L80: */
		}
/* L90: */
	    }
	} else {

/*           Form  C := alpha*A'*B + beta*C */

	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *m;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    temp = 0.;
		    i__3 = *k;
		    for (l = 1; l <= i__3; ++l) {
			temp += a[l + i__ * a_dim1] * b[l + j * b_dim1];
/* L100: */
		    }
		    if (*beta == 0.) {
			c__[i__ + j * c_dim1] = *alpha * temp;
		    } else {
			c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
				i__ + j * c_dim1];
		    }
/* L110: */
		}
/* L120: */
	    }
	}
    } else {
	if (nota) {

/*           Form  C := alpha*A*B' + beta*C */

	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		if (*beta == 0.) {
		    i__2 = *m;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			c__[i__ + j * c_dim1] = 0.;
/* L130: */
		    }
		} else if (*beta != 1.) {
		    i__2 = *m;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
/* L140: */
		    }
		}
		i__2 = *k;
		for (l = 1; l <= i__2; ++l) {
		    if (b[j + l * b_dim1] != 0.) {
			temp = *alpha * b[j + l * b_dim1];
			i__3 = *m;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    c__[i__ + j * c_dim1] += temp * a[i__ + l * 
				    a_dim1];
/* L150: */
			}
		    }
/* L160: */
		}
/* L170: */
	    }
	} else {

/*           Form  C := alpha*A'*B' + beta*C */

	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *m;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    temp = 0.;
		    i__3 = *k;
		    for (l = 1; l <= i__3; ++l) {
			temp += a[l + i__ * a_dim1] * b[j + l * b_dim1];
/* L180: */
		    }
		    if (*beta == 0.) {
			c__[i__ + j * c_dim1] = *alpha * temp;
		    } else {
			c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
				i__ + j * c_dim1];
		    }
/* L190: */
		}
/* L200: */
	    }
	}
    }

    return 0;

/*     End of DGEMM . */

} /* dgemm_ */