view dsp/tempotracking/TempoTrack.cpp @ 209:ccd2019190bf msvc

Some MSVC fixes, including (temporarily, probably) renaming the FFT source file to avoid getting it mixed up with the Vamp SDK one in our object dir
author Chris Cannam
date Thu, 01 Feb 2018 16:34:08 +0000
parents e4a57215ddee
children 7e52c034cf62
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*-  vi:set ts=8 sts=4 sw=4: */

/*
    QM DSP Library

    Centre for Digital Music, Queen Mary, University of London.
    This file copyright 2005-2006 Christian Landone.and Matthew Davies.

    This program is free software; you can redistribute it and/or
    modify it under the terms of the GNU General Public License as
    published by the Free Software Foundation; either version 2 of the
    License, or (at your option) any later version.  See the file
    COPYING included with this distribution for more information.
*/

#include "TempoTrack.h"

#include "maths/MathAliases.h"
#include "maths/MathUtilities.h"

#include <iostream>

#include <cassert>

//#define DEBUG_TEMPO_TRACK 1


#define RAY43VAL

//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////

TempoTrack::TempoTrack( TTParams Params )
{
    m_tempoScratch = NULL;
    m_rawDFFrame = NULL;
    m_smoothDFFrame = NULL;
    m_frameACF = NULL;
	m_smoothRCF = NULL;

    m_dataLength = 0;
    m_winLength = 0;
    m_lagLength = 0;

    m_rayparam = 0;
    m_sigma = 0;
    m_DFWVNnorm = 0;

    initialise( Params );
}

TempoTrack::~TempoTrack()
{
    deInitialise();
}

void TempoTrack::initialise( TTParams Params )
{	
    m_winLength = Params.winLength;
    m_lagLength = Params.lagLength;

    m_rayparam	 = 43.0;
    m_sigma = sqrt(3.9017);
    m_DFWVNnorm = exp( ( log( 2.0 ) / m_rayparam ) * ( m_winLength + 2 ) );

    m_rawDFFrame = new double[ m_winLength ];
    m_smoothDFFrame = new double[ m_winLength ];
    m_frameACF = new double[ m_winLength ];
    m_tempoScratch = new double[ m_lagLength ];
	m_smoothRCF = new double[ m_lagLength ];

    m_DFFramer.configure( m_winLength, m_lagLength );
	
    m_DFPParams.length = m_winLength;
    m_DFPParams.AlphaNormParam = Params.alpha;
    m_DFPParams.LPOrd = Params.LPOrd;
    m_DFPParams.LPACoeffs = Params.LPACoeffs;
    m_DFPParams.LPBCoeffs = Params.LPBCoeffs;
    m_DFPParams.winPre = Params.WinT.pre;
    m_DFPParams.winPost = Params.WinT.post;
    m_DFPParams.isMedianPositive = true;
	
    m_DFConditioning = new DFProcess( m_DFPParams );


	// these are parameters for smoothing m_tempoScratch
    m_RCFPParams.length = m_lagLength;
    m_RCFPParams.AlphaNormParam = Params.alpha;
    m_RCFPParams.LPOrd = Params.LPOrd;
    m_RCFPParams.LPACoeffs = Params.LPACoeffs;
    m_RCFPParams.LPBCoeffs = Params.LPBCoeffs;
    m_RCFPParams.winPre = Params.WinT.pre;
    m_RCFPParams.winPost = Params.WinT.post;
    m_RCFPParams.isMedianPositive = true;

    m_RCFConditioning = new DFProcess( m_RCFPParams );

}

void TempoTrack::deInitialise()
{	
    delete [] m_rawDFFrame;
	
    delete [] m_smoothDFFrame;

	delete [] m_smoothRCF;	
	
    delete [] m_frameACF;

    delete [] m_tempoScratch;

    delete m_DFConditioning;
	
	delete m_RCFConditioning;

}

void TempoTrack::createCombFilter(double* Filter, int winLength, int /* TSig */, double beatLag)
{
    int i;

    if( beatLag == 0 )
    {
	for( i = 0; i < winLength; i++ )
	{    
	    Filter[ i ] = ( ( i + 1 ) / pow( m_rayparam, 2.0) ) * exp( ( -pow(( i + 1 ),2.0 ) / ( 2.0 * pow( m_rayparam, 2.0))));
	}
    }
    else
    {	
	m_sigma = beatLag/4;
	for( i = 0; i < winLength; i++ )
	{
	    double dlag = (double)(i+1) - beatLag;
	    Filter[ i ] =  exp(-0.5 * pow(( dlag / m_sigma), 2.0) ) / (sqrt( 2 * PI) * m_sigma);
	}
    }
}

double TempoTrack::tempoMM(double* ACF, double* weight, int tsig)
{

    double period = 0;
    double maxValRCF = 0.0;
    int maxIndexRCF = 0;

    double* pdPeaks;

    int maxIndexTemp;
    double maxValTemp;
    int count; 
	
    int numelem,i,j;
    int a, b;

    for( i = 0; i < m_lagLength; i++ )
	m_tempoScratch[ i ] = 0.0;

    if( tsig == 0 ) 
    {
	//if time sig is unknown, use metrically unbiased version of Filterbank
	numelem = 4;
    }
    else
    {
	numelem = tsig;
    }

#ifdef DEBUG_TEMPO_TRACK
    std::cerr << "tempoMM: m_winLength = " << m_winLength << ", m_lagLength = " << m_lagLength << ", numelem = " << numelem << std::endl;
#endif

    for(i=1;i<m_lagLength-1;i++)
    {
	//first and last output values are left intentionally as zero
	for (a=1;a<=numelem;a++)
	{
	    for(b=(1-a);b<a;b++)
	    {
		if( tsig == 0 )
		{					
		    m_tempoScratch[i] += ACF[a*(i+1)+b-1] * (1.0 / (2.0 * (double)a-1)) * weight[i];
		}
		else
		{
		    m_tempoScratch[i] += ACF[a*(i+1)+b-1] * 1 * weight[i];
		}
	    }
	}
    }


	//////////////////////////////////////////////////
	// MODIFIED BEAT PERIOD EXTRACTION //////////////
	/////////////////////////////////////////////////

	// find smoothed version of RCF ( as applied to Detection Function)
	m_RCFConditioning->process( m_tempoScratch, m_smoothRCF);

	if (tsig != 0) // i.e. in context dependent state
	{	
//     NOW FIND MAX INDEX OF ACFOUT
            for( i = 0; i < m_lagLength; i++)
            {
                if( m_tempoScratch[ i ] > maxValRCF)
                {
                    maxValRCF = m_tempoScratch[ i ];
                    maxIndexRCF = i;
                }
            }
	}
	else // using rayleigh weighting
	{
		vector <vector<double> > rcfMat;
	
		double sumRcf = 0.;
	
		double maxVal = 0.;
		// now find the two values which minimise rcfMat
		double minVal = 0.;
		int p_i = 1; // periodicity for row i;
		int p_j = 1; //periodicity for column j;
	
	
		for ( i=0; i<m_lagLength; i++)
		{
			m_tempoScratch[i] =m_smoothRCF[i];
		}	

		// normalise m_tempoScratch so that it sums to zero.
		for ( i=0; i<m_lagLength; i++)
		{
			sumRcf += m_tempoScratch[i];
		}	
	
		for( i=0; i<m_lagLength; i++)
		{
			m_tempoScratch[i] /= sumRcf;
		}	
	
		// create a matrix to store m_tempoScratchValues modified by log2 ratio
		for ( i=0; i<m_lagLength; i++)
		{
			rcfMat.push_back  ( vector<double>() ); // adds a new row...
		}
	
		for (i=0; i<m_lagLength; i++)
		{
			for (j=0; j<m_lagLength; j++)
			{
				rcfMat[i].push_back (0.);
			}
		}
	
		// the 'i' and 'j' indices deliberately start from '1' and not '0'
		for ( i=1; i<m_lagLength; i++)
		{
			for (j=1; j<m_lagLength; j++)
			{
				double log2PeriodRatio = log( static_cast<double>(i)/static_cast<double>(j) ) / log(2.0);
				rcfMat[i][j] = ( abs(1.0-abs(log2PeriodRatio)) );
				rcfMat[i][j] += ( 0.01*( 1./(m_tempoScratch[i]+m_tempoScratch[j]) ) );
			}
		}
		
		// set diagonal equal to maximum value in rcfMat 
		// we don't want to pick one strong middle peak - we need a combination of two peaks.
	
		for ( i=1; i<m_lagLength; i++)
		{
			for (j=1; j<m_lagLength; j++)
			{
				if (rcfMat[i][j] > maxVal)
				{	
					maxVal = rcfMat[i][j];
				}
			}
		}
	
		for ( i=1; i<m_lagLength; i++)
		{
			rcfMat[i][i] = maxVal;
		}
	
		// now find the row and column number which minimise rcfMat
		minVal = maxVal;
		
		for ( i=1; i<m_lagLength; i++)
		{
			for ( j=1; j<m_lagLength; j++)
			{
				if (rcfMat[i][j] < minVal)
				{	
					minVal = rcfMat[i][j];
					p_i = i;
					p_j = j;
				}
			}
		}
	
	
		// initially choose p_j (arbitrary) - saves on an else statement
		int beatPeriod = p_j;
		if (m_tempoScratch[p_i] > m_tempoScratch[p_j])
		{
			beatPeriod = p_i;
		}
		
		// now write the output
		maxIndexRCF = static_cast<int>(beatPeriod);
	}


    double locked = 5168.f / maxIndexRCF;
    if (locked >= 30 && locked <= 180) {
        m_lockedTempo = locked;
    }

#ifdef DEBUG_TEMPO_TRACK
    std::cerr << "tempoMM: locked tempo = " << m_lockedTempo << std::endl;
#endif

    if( tsig == 0 )
	tsig = 4;


#ifdef DEBUG_TEMPO_TRACK
std::cerr << "tempoMM: maxIndexRCF = " << maxIndexRCF << std::endl;
#endif
	
    if( tsig == 4 )
    {
#ifdef DEBUG_TEMPO_TRACK
        std::cerr << "tsig == 4" << std::endl;
#endif

	pdPeaks = new double[ 4 ];
	for( i = 0; i < 4; i++ ){ pdPeaks[ i ] = 0.0;}

	pdPeaks[ 0 ] = ( double )maxIndexRCF + 1;

	maxIndexTemp = 0;
	maxValTemp = 0.0;
	count = 0;

	for( i = (2 * maxIndexRCF + 1) - 1; i < (2 * maxIndexRCF + 1) + 2; i++ )
	{
	    if( ACF[ i ] > maxValTemp )
	    {
		maxValTemp = ACF[ i ];
		maxIndexTemp = count;
	    }
	    count++;
	}
	pdPeaks[ 1 ] = (double)( maxIndexTemp + 1 + ( (2 * maxIndexRCF + 1 ) - 2 ) + 1 )/2;

	maxIndexTemp = 0;
	maxValTemp = 0.0;
	count = 0;

	for( i = (3 * maxIndexRCF + 2 ) - 2; i < (3 * maxIndexRCF + 2 ) + 3; i++ )
	{
	    if( ACF[ i ] > maxValTemp )
	    {
		maxValTemp = ACF[ i ];
		maxIndexTemp = count;
	    }
	    count++;
	}
	pdPeaks[ 2 ] = (double)( maxIndexTemp + 1 + ( (3 * maxIndexRCF + 2) - 4 ) + 1 )/3;

	maxIndexTemp = 0;
	maxValTemp = 0.0;
	count = 0;

	for( i = ( 4 * maxIndexRCF + 3) - 3; i < ( 4 * maxIndexRCF + 3) + 4; i++ )
	{
	    if( ACF[ i ] > maxValTemp )
	    {
		maxValTemp = ACF[ i ];
		maxIndexTemp = count;
	    }
	    count++;
	}
	pdPeaks[ 3 ] = (double)( maxIndexTemp + 1 + ( (4 * maxIndexRCF + 3) - 9 ) + 1 )/4 ;


	period = MathUtilities::mean( pdPeaks, 4 );
    }
    else
    { 
#ifdef DEBUG_TEMPO_TRACK
       std::cerr << "tsig != 4" << std::endl;
#endif

	pdPeaks = new double[ 3 ];
	for( i = 0; i < 3; i++ ){ pdPeaks[ i ] = 0.0;}

	pdPeaks[ 0 ] = ( double )maxIndexRCF + 1;

	maxIndexTemp = 0;
	maxValTemp = 0.0;
	count = 0;

	for( i = (2 * maxIndexRCF + 1) - 1; i < (2 * maxIndexRCF + 1) + 2; i++ )
	{
	    if( ACF[ i ] > maxValTemp )
	    {
		maxValTemp = ACF[ i ];
		maxIndexTemp = count;
	    }
	    count++;
	}
	pdPeaks[ 1 ] = (double)( maxIndexTemp + 1 + ( (2 * maxIndexRCF + 1 ) - 2 ) + 1 )/2;

	maxIndexTemp = 0;
	maxValTemp = 0.0;
	count = 0;

	for( i = (3 * maxIndexRCF + 2 ) - 2; i < (3 * maxIndexRCF + 2 ) + 3; i++ )
	{
	    if( ACF[ i ] > maxValTemp )
	    {
		maxValTemp = ACF[ i ];
		maxIndexTemp = count;
	    }
	    count++;
	}
	pdPeaks[ 2 ] = (double)( maxIndexTemp + 1 + ( (3 * maxIndexRCF + 2) - 4 ) + 1 )/3;


	period = MathUtilities::mean( pdPeaks, 3 );
    }

    delete [] pdPeaks;

    return period;
}

void TempoTrack::stepDetect( double* periodP, double* periodG, int currentIdx, int* flag )
{
    double stepthresh = 1 * 3.9017;

    if( *flag )
    {
	if(abs(periodG[ currentIdx ] - periodP[ currentIdx ]) > stepthresh)
	{
	    // do nuffin'
	}
    }
    else
    {
	if(fabs(periodG[ currentIdx ]-periodP[ currentIdx ]) > stepthresh)
	{
	    *flag = 3;
	}
    }
}

void TempoTrack::constDetect( double* periodP, int currentIdx, int* flag )
{
    double constthresh = 2 * 3.9017;

    if( fabs( 2 * periodP[ currentIdx ] - periodP[ currentIdx - 1] - periodP[ currentIdx - 2] ) < constthresh)
    {
	*flag = 1;
    }
    else
    {
	*flag = 0;
    }
}

int TempoTrack::findMeter(double *ACF, int len, double period)
{
    int i;
    int p = (int)MathUtilities::round( period );
    int tsig;

    double Energy_3 = 0.0;
    double Energy_4 = 0.0;

    double temp3A = 0.0;
    double temp3B = 0.0;
    double temp4A = 0.0;
    double temp4B = 0.0;

    double* dbf = new double[ len ]; int t = 0;
    for( int u = 0; u < len; u++ ){ dbf[ u ] = 0.0; }

    if( (double)len < 6 * p + 2 )
    {
	for( i = ( 3 * p - 2 ); i < ( 3 * p + 2 ) + 1; i++ )
	{
	    temp3A += ACF[ i ];
	    dbf[ t++ ] = ACF[ i ];
	}
	
	for( i = ( 4 * p - 2 ); i < ( 4 * p + 2 ) + 1; i++ )
	{
	    temp4A += ACF[ i ];
	}

	Energy_3 = temp3A;
	Energy_4 = temp4A;
    }
    else
    {
	for( i = ( 3 * p - 2 ); i < ( 3 * p + 2 ) + 1; i++ )
	{
	    temp3A += ACF[ i ];
	}
	
	for( i = ( 4 * p - 2 ); i < ( 4 * p + 2 ) + 1; i++ )
	{
	    temp4A += ACF[ i ];
	}

	for( i = ( 6 * p - 2 ); i < ( 6 * p + 2 ) + 1; i++ )
	{
	    temp3B += ACF[ i ];
	}
	
	for( i = ( 2 * p - 2 ); i < ( 2 * p + 2 ) + 1; i++ )
	{
	    temp4B += ACF[ i ];
	}

	Energy_3 = temp3A + temp3B;
	Energy_4 = temp4A + temp4B;
    }

    if (Energy_3 > Energy_4)
    {
	tsig = 3;
    }
    else
    {
	tsig = 4;
    }


    return tsig;
}

void TempoTrack::createPhaseExtractor(double *Filter, int /* winLength */, double period, int fsp, int lastBeat)
{	
    int p = (int)MathUtilities::round( period );
    int predictedOffset = 0;

#ifdef DEBUG_TEMPO_TRACK
    std::cerr << "TempoTrack::createPhaseExtractor: period = " << period << ", p = " << p << std::endl;
#endif

    if (p > 10000) {
        std::cerr << "TempoTrack::createPhaseExtractor: WARNING! Highly implausible period value " << p << "!" << std::endl;
        period = 5168 / 120;
    }

    double* phaseScratch = new double[ p*2 + 2 ];
    for (int i = 0; i < p*2 + 2; ++i) phaseScratch[i] = 0.0;

	
    if( lastBeat != 0 )
    {
	lastBeat = (int)MathUtilities::round((double)lastBeat );///(double)winLength);

        predictedOffset = lastBeat + p - fsp;

        if (predictedOffset < 0) 
        {
            lastBeat = 0;
        }
    }

    if( lastBeat != 0 )
    {
	int mu = p;
	double sigma = (double)p/8;
	double PhaseMin = 0.0;
	double PhaseMax = 0.0;
	int scratchLength = p*2;
	double temp = 0.0;

	for(  int i = 0; i < scratchLength; i++ )
	{
	    phaseScratch[ i ] = exp( -0.5 * pow( ( i - mu ) / sigma, 2 ) ) / ( sqrt( 2*PI ) *sigma );
	}

	MathUtilities::getFrameMinMax( phaseScratch, scratchLength, &PhaseMin, &PhaseMax );
			
	for(int i = 0; i < scratchLength; i ++)
	{
	    temp = phaseScratch[ i ];
	    phaseScratch[ i ] = (temp - PhaseMin)/PhaseMax;
	}

#ifdef DEBUG_TEMPO_TRACK
        std::cerr << "predictedOffset = " << predictedOffset << std::endl;
#endif

	int index = 0;
	for (int i = p - ( predictedOffset - 1); i < p + ( p - predictedOffset) + 1; i++)
	{
#ifdef DEBUG_TEMPO_TRACK
            std::cerr << "assigning to filter index " << index << " (size = " << p*2 << ")" << " value " << phaseScratch[i] << " from scratch index " << i << std::endl;
#endif
	    Filter[ index++ ] = phaseScratch[ i ];
	}
    }
    else
    {
	for( int i = 0; i < p; i ++)
	{
	    Filter[ i ] = 1;
	}
    }
	
    delete [] phaseScratch;
}

int TempoTrack::phaseMM(double *DF, double *weighting, int winLength, double period)
{
    int alignment = 0;
    int p = (int)MathUtilities::round( period );

    double temp = 0.0;

    double* y = new double[ winLength ];
    double* align = new double[ p ];

    for( int i = 0; i < winLength; i++ )
    {	
	y[ i ] = (double)( -i + winLength  )/(double)winLength;
	y[ i ] = pow(y [i ],2.0); // raise to power 2.
    }

    for( int o = 0; o < p; o++ )
    { 
	temp = 0.0;
	for(int i = 1 + (o - 1); i< winLength; i += (p + 1))
	{
	    temp = temp + DF[ i ] * y[ i ]; 
	}
	align[ o ] = temp * weighting[ o ];       
    }


    double valTemp = 0.0;
    for(int i = 0; i < p; i++)
    {
	if( align[ i ] > valTemp )
	{
	    valTemp = align[ i ];
	    alignment = i;
	}
    }

    delete [] y;
    delete [] align;

    return alignment;
}

int TempoTrack::beatPredict(int FSP0, double alignment, double period, int step )
{
    int beat = 0;

    int p = (int)MathUtilities::round( period );
    int align = (int)MathUtilities::round( alignment );
    int FSP = (int)MathUtilities::round( FSP0 );

    int FEP = FSP + ( step );

    beat = FSP + align;

    m_beats.push_back( beat );

    while( beat + p < FEP )
    {
	beat += p;
		
	m_beats.push_back( beat );
    }

    return beat;
}



vector<int> TempoTrack::process( vector <double> DF,
                                 vector <double> *tempoReturn )
{
    m_dataLength = DF.size();
	
    m_lockedTempo = 0.0;

    double	period = 0.0;
    int stepFlag = 0;
    int constFlag = 0;
    int FSP = 0;
    int tsig = 0;
    int lastBeat = 0;

    vector <double> causalDF;

    causalDF = DF;

    //Prepare Causal Extension DFData
//    int DFCLength = m_dataLength + m_winLength;
	
    for( int j = 0; j < m_winLength; j++ )
    {
	causalDF.push_back( 0 );
    }
	
	
    double* RW = new double[ m_lagLength ];
    for (int clear = 0; clear < m_lagLength; clear++){ RW[ clear ] = 0.0;}

    double* GW = new double[ m_lagLength ];
    for (int clear = 0; clear < m_lagLength; clear++){ GW[ clear ] = 0.0;}

    double* PW = new double[ m_lagLength ];
    for(int clear = 0; clear < m_lagLength; clear++){ PW[ clear ] = 0.0;}

    m_DFFramer.setSource( &causalDF[0], m_dataLength );

    int TTFrames = m_DFFramer.getMaxNoFrames();

#ifdef DEBUG_TEMPO_TRACK
    std::cerr << "TTFrames = " << TTFrames << std::endl;
#endif
	
    double* periodP = new double[ TTFrames ];
    for(int clear = 0; clear < TTFrames; clear++){ periodP[ clear ] = 0.0;}
	
    double* periodG = new double[ TTFrames ];
    for(int clear = 0; clear < TTFrames; clear++){ periodG[ clear ] = 0.0;}
	
    double* alignment = new double[ TTFrames ];
    for(int clear = 0; clear < TTFrames; clear++){ alignment[ clear ] = 0.0;}

    m_beats.clear();

    createCombFilter( RW, m_lagLength, 0, 0 );

    int TTLoopIndex = 0;

    for( int i = 0; i < TTFrames; i++ )
    {
	m_DFFramer.getFrame( m_rawDFFrame );

	m_DFConditioning->process( m_rawDFFrame, m_smoothDFFrame );

	m_correlator.doAutoUnBiased( m_smoothDFFrame, m_frameACF, m_winLength );
		
	periodP[ TTLoopIndex ] = tempoMM( m_frameACF, RW, 0 );

	if( GW[ 0 ] != 0 )
	{
	    periodG[ TTLoopIndex ] = tempoMM( m_frameACF, GW, tsig );
	}
	else
	{
	    periodG[ TTLoopIndex ] = 0.0;
	}

	stepDetect( periodP, periodG, TTLoopIndex, &stepFlag );

	if( stepFlag == 1)
	{
	    constDetect( periodP, TTLoopIndex, &constFlag );
	    stepFlag = 0;
	}
	else
	{
	    stepFlag -= 1;
	}

	if( stepFlag < 0 )
	{
	    stepFlag = 0;
	}

	if( constFlag != 0)
	{
	    tsig = findMeter( m_frameACF, m_winLength, periodP[ TTLoopIndex ] );
	
	    createCombFilter( GW, m_lagLength, tsig, periodP[ TTLoopIndex ] );
			
	    periodG[ TTLoopIndex ] = tempoMM( m_frameACF, GW, tsig ); 

	    period = periodG[ TTLoopIndex ];

#ifdef DEBUG_TEMPO_TRACK
            std::cerr << "TempoTrack::process: constFlag == " << constFlag << ", TTLoopIndex = " << TTLoopIndex << ", period from periodG = " << period << std::endl;
#endif

	    createPhaseExtractor( PW, m_winLength, period, FSP, 0 ); 

	    constFlag = 0;

	}
	else
	{
	    if( GW[ 0 ] != 0 )
	    {
		period = periodG[ TTLoopIndex ];

#ifdef DEBUG_TEMPO_TRACK
                std::cerr << "TempoTrack::process: GW[0] == " << GW[0] << ", TTLoopIndex = " << TTLoopIndex << ", period from periodG = " << period << std::endl;
#endif

                if (period > 10000) {
                    std::cerr << "TempoTrack::process: WARNING!  Highly implausible period value " << period << "!" << std::endl;
                    std::cerr << "periodG contains (of " << TTFrames << " frames): " << std::endl;
                    for (int i = 0; i < TTLoopIndex + 3 && i < TTFrames; ++i) {
                        std::cerr << i << " -> " << periodG[i] << std::endl;
                    }
                    std::cerr << "periodP contains (of " << TTFrames << " frames): " << std::endl;
                    for (int i = 0; i < TTLoopIndex + 3 && i < TTFrames; ++i) {
                        std::cerr << i << " -> " << periodP[i] << std::endl;
                    }
                    period = 5168 / 120;
                }

		createPhaseExtractor( PW, m_winLength, period, FSP, lastBeat ); 

	    }
	    else
	    {
		period = periodP[ TTLoopIndex ];

#ifdef DEBUG_TEMPO_TRACK
                std::cerr << "TempoTrack::process: GW[0] == " << GW[0] << ", TTLoopIndex = " << TTLoopIndex << ", period from periodP = " << period << std::endl;
#endif

		createPhaseExtractor( PW, m_winLength, period, FSP, 0 ); 
	    }
	}

	alignment[ TTLoopIndex ] = phaseMM( m_rawDFFrame, PW, m_winLength, period ); 

	lastBeat = beatPredict(FSP, alignment[ TTLoopIndex ], period, m_lagLength );

	FSP += (m_lagLength);

        if (tempoReturn) tempoReturn->push_back(m_lockedTempo);

	TTLoopIndex++;
    }


    delete [] periodP;
    delete [] periodG;
    delete [] alignment;

    delete [] RW;
    delete [] GW;
    delete [] PW;

    return m_beats;
}