view dsp/phasevocoder/PhaseVocoder.cpp @ 209:ccd2019190bf msvc

Some MSVC fixes, including (temporarily, probably) renaming the FFT source file to avoid getting it mixed up with the Vamp SDK one in our object dir
author Chris Cannam
date Thu, 01 Feb 2018 16:34:08 +0000
parents be6d811fd81f
children fdaa63607c15
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*-  vi:set ts=8 sts=4 sw=4: */

/*
    QM DSP Library

    Centre for Digital Music, Queen Mary, University of London.
    This file 2005-2006 Christian Landone, copyright 2013 QMUL.

    This program is free software; you can redistribute it and/or
    modify it under the terms of the GNU General Public License as
    published by the Free Software Foundation; either version 2 of the
    License, or (at your option) any later version.  See the file
    COPYING included with this distribution for more information.
*/

#include "PhaseVocoder.h"
#include "dsp/transforms/FFT.h"
#include "maths/MathUtilities.h"
#include <math.h>

#include <cassert>

#include <iostream>
using std::cerr;
using std::endl;

PhaseVocoder::PhaseVocoder(int n, int hop) :
    m_n(n),
    m_hop(hop)
{
    m_fft = new FFTReal(m_n);
    m_time = new double[m_n];
    m_real = new double[m_n];
    m_imag = new double[m_n];
    m_phase = new double[m_n/2 + 1];
    m_unwrapped = new double[m_n/2 + 1];

    for (int i = 0; i < m_n/2 + 1; ++i) {
        m_phase[i] = 0.0;
        m_unwrapped[i] = 0.0;
    }

    reset();
}

PhaseVocoder::~PhaseVocoder()
{
    delete[] m_unwrapped;
    delete[] m_phase;
    delete[] m_real;
    delete[] m_imag;
    delete[] m_time;
    delete m_fft;
}

void PhaseVocoder::FFTShift(double *src)
{
    const int hs = m_n/2;
    for (int i = 0; i < hs; ++i) {
        double tmp = src[i];
        src[i] = src[i + hs];
        src[i + hs] = tmp;
    }
}

void PhaseVocoder::processTimeDomain(const double *src,
                                     double *mag, double *theta,
                                     double *unwrapped)
{
    for (int i = 0; i < m_n; ++i) {
        m_time[i] = src[i];
    }
    FFTShift(m_time);
    m_fft->forward(m_time, m_real, m_imag);
    getMagnitudes(mag);
    getPhases(theta);
    unwrapPhases(theta, unwrapped);
}

void PhaseVocoder::processFrequencyDomain(const double *reals, 
                                          const double *imags,
                                          double *mag, double *theta,
                                          double *unwrapped)
{
    for (int i = 0; i < m_n/2 + 1; ++i) {
        m_real[i] = reals[i];
        m_imag[i] = imags[i];
    }
    getMagnitudes(mag);
    getPhases(theta);
    unwrapPhases(theta, unwrapped);
}

void PhaseVocoder::reset()
{
    for (int i = 0; i < m_n/2 + 1; ++i) {
        // m_phase stores the "previous" phase, so set to one step
        // behind so that a signal with initial phase at zero matches
        // the expected values. This is completely unnecessary for any
        // analytical purpose, it's just tidier.
        double omega = (2 * M_PI * m_hop * i) / m_n;
        m_phase[i] = -omega;
        m_unwrapped[i] = -omega;
    }
}

void PhaseVocoder::getMagnitudes(double *mag)
{	
    for (int i = 0; i < m_n/2 + 1; i++) {
	mag[i] = sqrt(m_real[i] * m_real[i] + m_imag[i] * m_imag[i]);
    }
}

void PhaseVocoder::getPhases(double *theta)
{
    for (int i = 0; i < m_n/2 + 1; i++) {
	theta[i] = atan2(m_imag[i], m_real[i]);
    }	
}

void PhaseVocoder::unwrapPhases(double *theta, double *unwrapped)
{
    for (int i = 0; i < m_n/2 + 1; ++i) {

        double omega = (2 * M_PI * m_hop * i) / m_n;
        double expected = m_phase[i] + omega;
        double error = MathUtilities::princarg(theta[i] - expected);

        unwrapped[i] = m_unwrapped[i] + omega + error;

        m_phase[i] = theta[i];
        m_unwrapped[i] = unwrapped[i];
    }
}