view dsp/onsets/DetectionFunction.cpp @ 209:ccd2019190bf msvc

Some MSVC fixes, including (temporarily, probably) renaming the FFT source file to avoid getting it mixed up with the Vamp SDK one in our object dir
author Chris Cannam
date Thu, 01 Feb 2018 16:34:08 +0000
parents 2ae4ceb76ac3
children fdaa63607c15
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*-  vi:set ts=8 sts=4 sw=4: */

/*
    QM DSP Library

    Centre for Digital Music, Queen Mary, University of London.
    This file 2005-2006 Christian Landone.

    This program is free software; you can redistribute it and/or
    modify it under the terms of the GNU General Public License as
    published by the Free Software Foundation; either version 2 of the
    License, or (at your option) any later version.  See the file
    COPYING included with this distribution for more information.
*/

#include "DetectionFunction.h"
#include <cstring>

//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////

DetectionFunction::DetectionFunction( DFConfig Config ) :
    m_window(0)
{
    m_magHistory = NULL;
    m_phaseHistory = NULL;
    m_phaseHistoryOld = NULL;
    m_magPeaks = NULL;

    initialise( Config );
}

DetectionFunction::~DetectionFunction()
{
    deInitialise();
}


void DetectionFunction::initialise( DFConfig Config )
{
    m_dataLength = Config.frameLength;
    m_halfLength = m_dataLength/2 + 1;

    m_DFType = Config.DFType;
    m_stepSize = Config.stepSize;
    m_dbRise = Config.dbRise;

    m_whiten = Config.adaptiveWhitening;
    m_whitenRelaxCoeff = Config.whiteningRelaxCoeff;
    m_whitenFloor = Config.whiteningFloor;
    if (m_whitenRelaxCoeff < 0) m_whitenRelaxCoeff = 0.9997;
    if (m_whitenFloor < 0) m_whitenFloor = 0.01;

    m_magHistory = new double[ m_halfLength ];
    memset(m_magHistory,0, m_halfLength*sizeof(double));
		
    m_phaseHistory = new double[ m_halfLength ];
    memset(m_phaseHistory,0, m_halfLength*sizeof(double));

    m_phaseHistoryOld = new double[ m_halfLength ];
    memset(m_phaseHistoryOld,0, m_halfLength*sizeof(double));

    m_magPeaks = new double[ m_halfLength ];
    memset(m_magPeaks,0, m_halfLength*sizeof(double));

    m_phaseVoc = new PhaseVocoder(m_dataLength, m_stepSize);

    m_magnitude = new double[ m_halfLength ];
    m_thetaAngle = new double[ m_halfLength ];
    m_unwrapped = new double[ m_halfLength ];

    m_window = new Window<double>(HanningWindow, m_dataLength);
    m_windowed = new double[ m_dataLength ];
}

void DetectionFunction::deInitialise()
{
    delete [] m_magHistory ;
    delete [] m_phaseHistory ;
    delete [] m_phaseHistoryOld ;
    delete [] m_magPeaks ;

    delete m_phaseVoc;

    delete [] m_magnitude;
    delete [] m_thetaAngle;
    delete [] m_windowed;
    delete [] m_unwrapped;

    delete m_window;
}

double DetectionFunction::processTimeDomain(const double *samples)
{
    m_window->cut(samples, m_windowed);

    m_phaseVoc->processTimeDomain(m_windowed, 
                                  m_magnitude, m_thetaAngle, m_unwrapped);

    if (m_whiten) whiten();

    return runDF();
}

double DetectionFunction::processFrequencyDomain(const double *reals,
                                                 const double *imags)
{
    m_phaseVoc->processFrequencyDomain(reals, imags,
                                       m_magnitude, m_thetaAngle, m_unwrapped);

    if (m_whiten) whiten();

    return runDF();
}

void DetectionFunction::whiten()
{
    for (unsigned int i = 0; i < m_halfLength; ++i) {
        double m = m_magnitude[i];
        if (m < m_magPeaks[i]) {
            m = m + (m_magPeaks[i] - m) * m_whitenRelaxCoeff;
        }
        if (m < m_whitenFloor) m = m_whitenFloor;
        m_magPeaks[i] = m;
        m_magnitude[i] /= m;
    }
}

double DetectionFunction::runDF()
{
    double retVal = 0;

    switch( m_DFType )
    {
    case DF_HFC:
	retVal = HFC( m_halfLength, m_magnitude);
	break;
	
    case DF_SPECDIFF:
	retVal = specDiff( m_halfLength, m_magnitude);
	break;
	
    case DF_PHASEDEV:
        // Using the instantaneous phases here actually provides the
        // same results (for these calculations) as if we had used
        // unwrapped phases, but without the possible accumulation of
        // phase error over time
	retVal = phaseDev( m_halfLength, m_thetaAngle);
	break;
	
    case DF_COMPLEXSD:
	retVal = complexSD( m_halfLength, m_magnitude, m_thetaAngle);
	break;

    case DF_BROADBAND:
        retVal = broadband( m_halfLength, m_magnitude);
        break;
    }
	
    return retVal;
}

double DetectionFunction::HFC(unsigned int length, double *src)
{
    unsigned int i;
    double val = 0;

    for( i = 0; i < length; i++)
    {
	val += src[ i ] * ( i + 1);
    }
    return val;
}

double DetectionFunction::specDiff(unsigned int length, double *src)
{
    unsigned int i;
    double val = 0.0;
    double temp = 0.0;
    double diff = 0.0;

    for( i = 0; i < length; i++)
    {
	temp = fabs( (src[ i ] * src[ i ]) - (m_magHistory[ i ] * m_magHistory[ i ]) );
		
	diff= sqrt(temp);

        // (See note in phaseDev below.)

        val += diff;

	m_magHistory[ i ] = src[ i ];
    }

    return val;
}


double DetectionFunction::phaseDev(unsigned int length, double *srcPhase)
{
    unsigned int i;
    double tmpPhase = 0;
    double tmpVal = 0;
    double val = 0;

    double dev = 0;

    for( i = 0; i < length; i++)
    {
	tmpPhase = (srcPhase[ i ]- 2*m_phaseHistory[ i ]+m_phaseHistoryOld[ i ]);
	dev = MathUtilities::princarg( tmpPhase );

        // A previous version of this code only counted the value here
        // if the magnitude exceeded 0.1.  My impression is that
        // doesn't greatly improve the results for "loud" music (so
        // long as the peak picker is reasonably sophisticated), but
        // does significantly damage its ability to work with quieter
        // music, so I'm removing it and counting the result always.
        // Same goes for the spectral difference measure above.
		
        tmpVal  = fabs(dev);
        val += tmpVal ;

	m_phaseHistoryOld[ i ] = m_phaseHistory[ i ] ;
	m_phaseHistory[ i ] = srcPhase[ i ];
    }
	
    return val;
}


double DetectionFunction::complexSD(unsigned int length, double *srcMagnitude, double *srcPhase)
{
    unsigned int i;
    double val = 0;
    double tmpPhase = 0;
    double tmpReal = 0;
    double tmpImag = 0;
   
    double dev = 0;
    ComplexData meas = ComplexData( 0, 0 );
    ComplexData j = ComplexData( 0, 1 );

    for( i = 0; i < length; i++)
    {
	tmpPhase = (srcPhase[ i ]- 2*m_phaseHistory[ i ]+m_phaseHistoryOld[ i ]);
	dev= MathUtilities::princarg( tmpPhase );
		
	meas = m_magHistory[i] - ( srcMagnitude[ i ] * exp( j * dev) );

	tmpReal = real( meas );
	tmpImag = imag( meas );

	val += sqrt( (tmpReal * tmpReal) + (tmpImag * tmpImag) );
		
	m_phaseHistoryOld[ i ] = m_phaseHistory[ i ] ;
	m_phaseHistory[ i ] = srcPhase[ i ];
	m_magHistory[ i ] = srcMagnitude[ i ];
    }

    return val;
}

double DetectionFunction::broadband(unsigned int length, double *src)
{
    double val = 0;
    for (unsigned int i = 0; i < length; ++i) {
        double sqrmag = src[i] * src[i];
        if (m_magHistory[i] > 0.0) {
            double diff = 10.0 * log10(sqrmag / m_magHistory[i]);
            if (diff > m_dbRise) val = val + 1;
        }
        m_magHistory[i] = sqrmag;
    }
    return val;
}        

double* DetectionFunction::getSpectrumMagnitude()
{
    return m_magnitude;
}