Mercurial > hg > qm-dsp
view dsp/tempotracking/DownBeat.cpp @ 280:9c403afdd9e9
* Various fixes related to the bar estimator code
author | Chris Cannam <c.cannam@qmul.ac.uk> |
---|---|
date | Tue, 10 Feb 2009 16:37:11 +0000 |
parents | c8908cdc8c32 |
children | a0f987c06bec |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* QM DSP Library Centre for Digital Music, Queen Mary, University of London. This file copyright 2008-2009 Matthew Davies and QMUL. All rights reserved. */ #include "DownBeat.h" #include "maths/MathAliases.h" #include "maths/MathUtilities.h" #include "maths/KLDivergence.h" #include "dsp/transforms/FFT.h" #include <iostream> #include <cstdlib> DownBeat::DownBeat(float originalSampleRate, size_t decimationFactor, size_t dfIncrement) : m_bpb(0), m_rate(originalSampleRate), m_factor(decimationFactor), m_increment(dfIncrement), m_decimator1(0), m_decimator2(0), m_buffer(0), m_bufsiz(0), m_buffill(0), m_beatframesize(0), m_beatframe(0) { // beat frame size is next power of two up from 1.3 seconds at the // downsampled rate (happens to produce 4096 for 44100 or 48000 at // 16x decimation, which is our expected normal situation) m_beatframesize = MathUtilities::nextPowerOfTwo (int((m_rate / decimationFactor) * 1.3)); std::cerr << "rate = " << m_rate << ", bfs = " << m_beatframesize << std::endl; m_beatframe = new double[m_beatframesize]; m_fftRealOut = new double[m_beatframesize]; m_fftImagOut = new double[m_beatframesize]; } DownBeat::~DownBeat() { delete m_decimator1; delete m_decimator2; if (m_buffer) free(m_buffer); delete[] m_decbuf; delete[] m_beatframe; delete[] m_fftRealOut; delete[] m_fftImagOut; } void DownBeat::setBeatsPerBar(int bpb) { m_bpb = bpb; } void DownBeat::makeDecimators() { if (m_factor < 2) return; int highest = Decimator::getHighestSupportedFactor(); if (m_factor <= highest) { m_decimator1 = new Decimator(m_increment, m_factor); std::cerr << "DownBeat: decimator 1 factor " << m_factor << ", size " << m_increment << std::endl; return; } m_decimator1 = new Decimator(m_increment, highest); std::cerr << "DownBeat: decimator 1 factor " << highest << ", size " << m_increment << std::endl; m_decimator2 = new Decimator(m_increment / highest, m_factor / highest); std::cerr << "DownBeat: decimator 2 factor " << m_factor / highest << ", size " << m_increment / highest << std::endl; m_decbuf = new float[m_increment / highest]; } void DownBeat::pushAudioBlock(const float *audio) { if (m_buffill + (m_increment / m_factor) > m_bufsiz) { if (m_bufsiz == 0) m_bufsiz = m_increment * 16; else m_bufsiz = m_bufsiz * 2; if (!m_buffer) { m_buffer = (float *)malloc(m_bufsiz * sizeof(float)); } else { std::cerr << "DownBeat::pushAudioBlock: realloc m_buffer to " << m_bufsiz << std::endl; m_buffer = (float *)realloc(m_buffer, m_bufsiz * sizeof(float)); } } if (!m_decimator1) makeDecimators(); float rmsin = 0, rmsout = 0; for (int i = 0; i < m_increment; ++i) { rmsin += audio[i] * audio[i]; } if (m_decimator2) { m_decimator1->process(audio, m_decbuf); m_decimator2->process(m_decbuf, m_buffer + m_buffill); } else { m_decimator1->process(audio, m_buffer + m_buffill); } for (int i = 0; i < m_increment / m_factor; ++i) { rmsout += m_buffer[m_buffill + i] * m_buffer[m_buffill + i]; } std::cerr << "pushAudioBlock: rms in " << sqrt(rmsin) << ", out " << sqrt(rmsout) << std::endl; m_buffill += m_increment / m_factor; } const float * DownBeat::getBufferedAudio(size_t &length) const { length = m_buffill; return m_buffer; } void DownBeat::resetAudioBuffer() { if (m_buffer) free(m_buffer); m_buffill = 0; m_bufsiz = 0; } void DownBeat::findDownBeats(const float *audio, size_t audioLength, const d_vec_t &beats, i_vec_t &downbeats) { // FIND DOWNBEATS BY PARTITIONING THE INPUT AUDIO FILE INTO BEAT SEGMENTS // WHERE THE AUDIO FRAMES ARE DOWNSAMPLED BY A FACTOR OF 16 (fs ~= 2700Hz) // THEN TAKING THE JENSEN-SHANNON DIVERGENCE BETWEEN BEAT SYNCHRONOUS SPECTRAL FRAMES // IMPLEMENTATION (MOSTLY) FOLLOWS: // DAVIES AND PLUMBLEY "A SPECTRAL DIFFERENCE APPROACH TO EXTRACTING DOWNBEATS IN MUSICAL AUDIO" // EUSIPCO 2006, FLORENCE, ITALY d_vec_t newspec(m_beatframesize / 2); // magnitude spectrum of current beat d_vec_t oldspec(m_beatframesize / 2); // magnitude spectrum of previous beat d_vec_t specdiff; if (audioLength == 0) return; for (size_t i = 0; i + 1 < beats.size(); ++i) { // Copy the extents of the current beat from downsampled array // into beat frame buffer size_t beatstart = (beats[i] * m_increment) / m_factor; size_t beatend = (beats[i+1] * m_increment) / m_factor; if (beatend >= audioLength) beatend = audioLength - 1; if (beatend < beatstart) beatend = beatstart; size_t beatlen = beatend - beatstart; // Also apply a Hanning window to the beat frame buffer, sized // to the beat extents rather than the frame size. (Because // the size varies, it's easier to do this by hand than use // our Window abstraction.) float rms = 0; for (size_t j = 0; j < beatlen; ++j) { double mul = 0.5 * (1.0 - cos(TWO_PI * (double(j) / double(beatlen)))); m_beatframe[j] = audio[beatstart + j] * mul; rms += m_beatframe[j] * m_beatframe[j]; } rms = sqrt(rms); std::cerr << "beat " << i << ": audio rms " << rms << std::endl; for (size_t j = beatlen; j < m_beatframesize; ++j) { m_beatframe[j] = 0.0; } // Now FFT beat frame FFT::process(m_beatframesize, false, m_beatframe, 0, m_fftRealOut, m_fftImagOut); // Calculate magnitudes for (size_t j = 0; j < m_beatframesize/2; ++j) { newspec[j] = sqrt(m_fftRealOut[j] * m_fftRealOut[j] + m_fftImagOut[j] * m_fftImagOut[j]); } // Preserve peaks by applying adaptive threshold MathUtilities::adaptiveThreshold(newspec); // Calculate JS divergence between new and old spectral frames specdiff.push_back(measureSpecDiff(oldspec, newspec)); // specdiff.push_back(KLDivergence().distanceDistribution(oldspec, newspec, false)); std::cerr << "specdiff: " << specdiff[specdiff.size()-1] << std::endl; // Copy newspec across to old for (size_t j = 0; j < m_beatframesize/2; ++j) { oldspec[j] = newspec[j]; } } // We now have all spectral difference measures in specdiff uint timesig = m_bpb; if (timesig == 0) timesig = 4; d_vec_t dbcand(timesig); // downbeat candidates for (int beat = 0; beat < timesig; ++beat) { dbcand[beat] = 0; } // look for beat transition which leads to greatest spectral change for (int beat = 0; beat < timesig; ++beat) { for (int example = beat; example < specdiff.size(); example += timesig) { dbcand[beat] += (specdiff[example]) / timesig; } std::cerr << "dbcand[" << beat << "] = " << dbcand[beat] << std::endl; } // first downbeat is beat at index of maximum value of dbcand int dbind = MathUtilities::getMax(dbcand); // remaining downbeats are at timesig intervals from the first for (int i = dbind; i < beats.size(); i += timesig) { downbeats.push_back(i); } } double DownBeat::measureSpecDiff(d_vec_t oldspec, d_vec_t newspec) { // JENSEN-SHANNON DIVERGENCE BETWEEN SPECTRAL FRAMES uint SPECSIZE = 512; // ONLY LOOK AT FIRST 512 SAMPLES OF SPECTRUM. if (SPECSIZE > oldspec.size()/4) { SPECSIZE = oldspec.size()/4; } double SD = 0.; double sd1 = 0.; double sumnew = 0.; double sumold = 0.; for (uint i = 0;i < SPECSIZE;i++) { newspec[i] +=EPS; oldspec[i] +=EPS; sumnew+=newspec[i]; sumold+=oldspec[i]; } for (uint i = 0;i < SPECSIZE;i++) { newspec[i] /= (sumnew); oldspec[i] /= (sumold); // IF ANY SPECTRAL VALUES ARE 0 (SHOULDN'T BE ANY!) SET THEM TO 1 if (newspec[i] == 0) { newspec[i] = 1.; } if (oldspec[i] == 0) { oldspec[i] = 1.; } // JENSEN-SHANNON CALCULATION sd1 = 0.5*oldspec[i] + 0.5*newspec[i]; SD = SD + (-sd1*log(sd1)) + (0.5*(oldspec[i]*log(oldspec[i]))) + (0.5*(newspec[i]*log(newspec[i]))); } return SD; }