Mercurial > hg > qm-dsp
view dsp/tempotracking/TempoTrackV2.cpp @ 96:88f3cfcff55f
A threshold (delta) is added in the peak picking parameters structure (PPickParams). It is used as an offset when computing the smoothed detection function. A constructor for the structure PPickParams is also added to set the parameters to 0 when a structure instance is created. Hence programmes using the peak picking parameter structure and which do not set the delta parameter (e.g. QM Vamp note onset detector) won't be affected by the modifications.
Functions modified:
- dsp/onsets/PeakPicking.cpp
- dsp/onsets/PeakPicking.h
- dsp/signalconditioning/DFProcess.cpp
- dsp/signalconditioning/DFProcess.h
author | mathieub <mathieu.barthet@eecs.qmul.ac.uk> |
---|---|
date | Mon, 20 Jun 2011 19:01:48 +0100 |
parents | e5907ae6de17 |
children | d7619173d43c 37449f085a4c |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* QM DSP Library Centre for Digital Music, Queen Mary, University of London. This file copyright 2008-2009 Matthew Davies and QMUL. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "TempoTrackV2.h" #include <cmath> #include <cstdlib> #include <iostream> #include "maths/MathUtilities.h" #define EPS 0.0000008 // just some arbitrary small number TempoTrackV2::TempoTrackV2(float rate, size_t increment) : m_rate(rate), m_increment(increment) { } TempoTrackV2::~TempoTrackV2() { } void TempoTrackV2::filter_df(d_vec_t &df) { d_vec_t a(3); d_vec_t b(3); d_vec_t lp_df(df.size()); //equivalent in matlab to [b,a] = butter(2,0.4); a[0] = 1.0000; a[1] = -0.3695; a[2] = 0.1958; b[0] = 0.2066; b[1] = 0.4131; b[2] = 0.2066; double inp1 = 0.; double inp2 = 0.; double out1 = 0.; double out2 = 0.; // forwards filtering for (unsigned int i = 0;i < df.size();i++) { lp_df[i] = b[0]*df[i] + b[1]*inp1 + b[2]*inp2 - a[1]*out1 - a[2]*out2; inp2 = inp1; inp1 = df[i]; out2 = out1; out1 = lp_df[i]; } // copy forwards filtering to df... // but, time-reversed, ready for backwards filtering for (unsigned int i = 0;i < df.size();i++) { df[i] = lp_df[df.size()-i-1]; } for (unsigned int i = 0;i < df.size();i++) { lp_df[i] = 0.; } inp1 = 0.; inp2 = 0.; out1 = 0.; out2 = 0.; // backwards filetering on time-reversed df for (unsigned int i = 0;i < df.size();i++) { lp_df[i] = b[0]*df[i] + b[1]*inp1 + b[2]*inp2 - a[1]*out1 - a[2]*out2; inp2 = inp1; inp1 = df[i]; out2 = out1; out1 = lp_df[i]; } // write the re-reversed (i.e. forward) version back to df for (unsigned int i = 0;i < df.size();i++) { df[i] = lp_df[df.size()-i-1]; } } void TempoTrackV2::calculateBeatPeriod(const vector<double> &df, vector<double> &beat_period, vector<double> &tempi) { // to follow matlab.. split into 512 sample frames with a 128 hop size // calculate the acf, // then the rcf.. and then stick the rcfs as columns of a matrix // then call viterbi decoding with weight vector and transition matrix // and get best path unsigned int wv_len = 128; double rayparam = 43.; // make rayleigh weighting curve d_vec_t wv(wv_len); for (unsigned int i=0; i<wv.size(); i++) { wv[i] = (static_cast<double> (i) / pow(rayparam,2.)) * exp((-1.*pow(-static_cast<double> (i),2.)) / (2.*pow(rayparam,2.))); } // beat tracking frame size (roughly 6 seconds) and hop (1.5 seconds) unsigned int winlen = 512; unsigned int step = 128; // matrix to store output of comb filter bank, increment column of matrix at each frame d_mat_t rcfmat; int col_counter = -1; // main loop for beat period calculation for (unsigned int i=0; i+winlen<df.size(); i+=step) { // get dfframe d_vec_t dfframe(winlen); for (unsigned int k=0; k<winlen; k++) { dfframe[k] = df[i+k]; } // get rcf vector for current frame d_vec_t rcf(wv_len); get_rcf(dfframe,wv,rcf); rcfmat.push_back( d_vec_t() ); // adds a new column col_counter++; for (unsigned int j=0; j<rcf.size(); j++) { rcfmat[col_counter].push_back( rcf[j] ); } } // now call viterbi decoding function viterbi_decode(rcfmat,wv,beat_period,tempi); } void TempoTrackV2::get_rcf(const d_vec_t &dfframe_in, const d_vec_t &wv, d_vec_t &rcf) { // calculate autocorrelation function // then rcf // just hard code for now... don't really need separate functions to do this // make acf d_vec_t dfframe(dfframe_in); MathUtilities::adaptiveThreshold(dfframe); d_vec_t acf(dfframe.size()); for (unsigned int lag=0; lag<dfframe.size(); lag++) { double sum = 0.; double tmp = 0.; for (unsigned int n=0; n<(dfframe.size()-lag); n++) { tmp = dfframe[n] * dfframe[n+lag]; sum += tmp; } acf[lag] = static_cast<double> (sum/ (dfframe.size()-lag)); } // now apply comb filtering int numelem = 4; for (unsigned int i = 2;i < rcf.size();i++) // max beat period { for (int a = 1;a <= numelem;a++) // number of comb elements { for (int b = 1-a;b <= a-1;b++) // general state using normalisation of comb elements { rcf[i-1] += ( acf[(a*i+b)-1]*wv[i-1] ) / (2.*a-1.); // calculate value for comb filter row } } } // apply adaptive threshold to rcf MathUtilities::adaptiveThreshold(rcf); double rcfsum =0.; for (unsigned int i=0; i<rcf.size(); i++) { rcf[i] += EPS ; rcfsum += rcf[i]; } // normalise rcf to sum to unity for (unsigned int i=0; i<rcf.size(); i++) { rcf[i] /= (rcfsum + EPS); } } void TempoTrackV2::viterbi_decode(const d_mat_t &rcfmat, const d_vec_t &wv, d_vec_t &beat_period, d_vec_t &tempi) { // following Kevin Murphy's Viterbi decoding to get best path of // beat periods through rfcmat // make transition matrix d_mat_t tmat; for (unsigned int i=0;i<wv.size();i++) { tmat.push_back ( d_vec_t() ); // adds a new column for (unsigned int j=0; j<wv.size(); j++) { tmat[i].push_back(0.); // fill with zeros initially } } // variance of Gaussians in transition matrix // formed of Gaussians on diagonal - implies slow tempo change double sigma = 8.; // don't want really short beat periods, or really long ones for (unsigned int i=20;i <wv.size()-20; i++) { for (unsigned int j=20; j<wv.size()-20; j++) { double mu = static_cast<double>(i); tmat[i][j] = exp( (-1.*pow((j-mu),2.)) / (2.*pow(sigma,2.)) ); } } // parameters for Viterbi decoding... this part is taken from // Murphy's matlab d_mat_t delta; i_mat_t psi; for (unsigned int i=0;i <rcfmat.size(); i++) { delta.push_back( d_vec_t()); psi.push_back( i_vec_t()); for (unsigned int j=0; j<rcfmat[i].size(); j++) { delta[i].push_back(0.); // fill with zeros initially psi[i].push_back(0); // fill with zeros initially } } unsigned int T = delta.size(); if (T < 2) return; // can't do anything at all meaningful unsigned int Q = delta[0].size(); // initialize first column of delta for (unsigned int j=0; j<Q; j++) { delta[0][j] = wv[j] * rcfmat[0][j]; psi[0][j] = 0; } double deltasum = 0.; for (unsigned int i=0; i<Q; i++) { deltasum += delta[0][i]; } for (unsigned int i=0; i<Q; i++) { delta[0][i] /= (deltasum + EPS); } for (unsigned int t=1; t<T; t++) { d_vec_t tmp_vec(Q); for (unsigned int j=0; j<Q; j++) { for (unsigned int i=0; i<Q; i++) { tmp_vec[i] = delta[t-1][i] * tmat[j][i]; } delta[t][j] = get_max_val(tmp_vec); psi[t][j] = get_max_ind(tmp_vec); delta[t][j] *= rcfmat[t][j]; } // normalise current delta column double deltasum = 0.; for (unsigned int i=0; i<Q; i++) { deltasum += delta[t][i]; } for (unsigned int i=0; i<Q; i++) { delta[t][i] /= (deltasum + EPS); } } i_vec_t bestpath(T); d_vec_t tmp_vec(Q); for (unsigned int i=0; i<Q; i++) { tmp_vec[i] = delta[T-1][i]; } // find starting point - best beat period for "last" frame bestpath[T-1] = get_max_ind(tmp_vec); // backtrace through index of maximum values in psi for (unsigned int t=T-2; t>0 ;t--) { bestpath[t] = psi[t+1][bestpath[t+1]]; } // weird but necessary hack -- couldn't get above loop to terminate at t >= 0 bestpath[0] = psi[1][bestpath[1]]; unsigned int lastind = 0; for (unsigned int i=0; i<T; i++) { unsigned int step = 128; for (unsigned int j=0; j<step; j++) { lastind = i*step+j; beat_period[lastind] = bestpath[i]; } // std::cerr << "bestpath[" << i << "] = " << bestpath[i] << " (used for beat_periods " << i*step << " to " << i*step+step-1 << ")" << std::endl; } //fill in the last values... for (unsigned int i=lastind; i<beat_period.size(); i++) { beat_period[i] = beat_period[lastind]; } for (unsigned int i = 0; i < beat_period.size(); i++) { tempi.push_back((60. * m_rate / m_increment)/beat_period[i]); } } double TempoTrackV2::get_max_val(const d_vec_t &df) { double maxval = 0.; for (unsigned int i=0; i<df.size(); i++) { if (maxval < df[i]) { maxval = df[i]; } } return maxval; } int TempoTrackV2::get_max_ind(const d_vec_t &df) { double maxval = 0.; int ind = 0; for (unsigned int i=0; i<df.size(); i++) { if (maxval < df[i]) { maxval = df[i]; ind = i; } } return ind; } void TempoTrackV2::normalise_vec(d_vec_t &df) { double sum = 0.; for (unsigned int i=0; i<df.size(); i++) { sum += df[i]; } for (unsigned int i=0; i<df.size(); i++) { df[i]/= (sum + EPS); } } void TempoTrackV2::calculateBeats(const vector<double> &df, const vector<double> &beat_period, vector<double> &beats) { if (df.empty() || beat_period.empty()) return; d_vec_t cumscore(df.size()); // store cumulative score i_vec_t backlink(df.size()); // backlink (stores best beat locations at each time instant) d_vec_t localscore(df.size()); // localscore, for now this is the same as the detection function for (unsigned int i=0; i<df.size(); i++) { localscore[i] = df[i]; backlink[i] = -1; } double tightness = 4.; double alpha = 0.9; // main loop for (unsigned int i=0; i<localscore.size(); i++) { int prange_min = -2*beat_period[i]; int prange_max = round(-0.5*beat_period[i]); // transition range d_vec_t txwt (prange_max - prange_min + 1); d_vec_t scorecands (txwt.size()); for (unsigned int j=0;j<txwt.size();j++) { double mu = static_cast<double> (beat_period[i]); txwt[j] = exp( -0.5*pow(tightness * log((round(2*mu)-j)/mu),2)); // IF IN THE ALLOWED RANGE, THEN LOOK AT CUMSCORE[I+PRANGE_MIN+J // ELSE LEAVE AT DEFAULT VALUE FROM INITIALISATION: D_VEC_T SCORECANDS (TXWT.SIZE()); int cscore_ind = i+prange_min+j; if (cscore_ind >= 0) { scorecands[j] = txwt[j] * cumscore[cscore_ind]; } } // find max value and index of maximum value double vv = get_max_val(scorecands); int xx = get_max_ind(scorecands); cumscore[i] = alpha*vv + (1.-alpha)*localscore[i]; backlink[i] = i+prange_min+xx; // std::cerr << "backlink[" << i << "] <= " << backlink[i] << std::endl; } // STARTING POINT, I.E. LAST BEAT.. PICK A STRONG POINT IN cumscore VECTOR d_vec_t tmp_vec; for (unsigned int i=cumscore.size() - beat_period[beat_period.size()-1] ; i<cumscore.size(); i++) { tmp_vec.push_back(cumscore[i]); } int startpoint = get_max_ind(tmp_vec) + cumscore.size() - beat_period[beat_period.size()-1] ; // can happen if no results obtained earlier (e.g. input too short) if (startpoint >= backlink.size()) startpoint = backlink.size()-1; // USE BACKLINK TO GET EACH NEW BEAT (TOWARDS THE BEGINNING OF THE FILE) // BACKTRACKING FROM THE END TO THE BEGINNING.. MAKING SURE NOT TO GO BEFORE SAMPLE 0 i_vec_t ibeats; ibeats.push_back(startpoint); // std::cerr << "startpoint = " << startpoint << std::endl; while (backlink[ibeats.back()] > 0) { // std::cerr << "backlink[" << ibeats.back() << "] = " << backlink[ibeats.back()] << std::endl; int b = ibeats.back(); if (backlink[b] == b) break; // shouldn't happen... haha ibeats.push_back(backlink[b]); } // REVERSE SEQUENCE OF IBEATS AND STORE AS BEATS for (unsigned int i=0; i<ibeats.size(); i++) { beats.push_back( static_cast<double>(ibeats[ibeats.size()-i-1]) ); } }