Mercurial > hg > qm-dsp
view dsp/tempotracking/DownBeat.cpp @ 96:88f3cfcff55f
A threshold (delta) is added in the peak picking parameters structure (PPickParams). It is used as an offset when computing the smoothed detection function. A constructor for the structure PPickParams is also added to set the parameters to 0 when a structure instance is created. Hence programmes using the peak picking parameter structure and which do not set the delta parameter (e.g. QM Vamp note onset detector) won't be affected by the modifications.
Functions modified:
- dsp/onsets/PeakPicking.cpp
- dsp/onsets/PeakPicking.h
- dsp/signalconditioning/DFProcess.cpp
- dsp/signalconditioning/DFProcess.h
author | mathieub <mathieu.barthet@eecs.qmul.ac.uk> |
---|---|
date | Mon, 20 Jun 2011 19:01:48 +0100 |
parents | e5907ae6de17 |
children | f6ccde089491 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* QM DSP Library Centre for Digital Music, Queen Mary, University of London. This file copyright 2008-2009 Matthew Davies and QMUL. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "DownBeat.h" #include "maths/MathAliases.h" #include "maths/MathUtilities.h" #include "maths/KLDivergence.h" #include "dsp/transforms/FFT.h" #include <iostream> #include <cstdlib> DownBeat::DownBeat(float originalSampleRate, size_t decimationFactor, size_t dfIncrement) : m_bpb(0), m_rate(originalSampleRate), m_factor(decimationFactor), m_increment(dfIncrement), m_decimator1(0), m_decimator2(0), m_buffer(0), m_decbuf(0), m_bufsiz(0), m_buffill(0), m_beatframesize(0), m_beatframe(0) { // beat frame size is next power of two up from 1.3 seconds at the // downsampled rate (happens to produce 4096 for 44100 or 48000 at // 16x decimation, which is our expected normal situation) m_beatframesize = MathUtilities::nextPowerOfTwo (int((m_rate / decimationFactor) * 1.3)); // std::cerr << "rate = " << m_rate << ", bfs = " << m_beatframesize << std::endl; m_beatframe = new double[m_beatframesize]; m_fftRealOut = new double[m_beatframesize]; m_fftImagOut = new double[m_beatframesize]; m_fft = new FFTReal(m_beatframesize); } DownBeat::~DownBeat() { delete m_decimator1; delete m_decimator2; if (m_buffer) free(m_buffer); delete[] m_decbuf; delete[] m_beatframe; delete[] m_fftRealOut; delete[] m_fftImagOut; delete m_fft; } void DownBeat::setBeatsPerBar(int bpb) { m_bpb = bpb; } void DownBeat::makeDecimators() { // std::cerr << "m_factor = " << m_factor << std::endl; if (m_factor < 2) return; size_t highest = Decimator::getHighestSupportedFactor(); if (m_factor <= highest) { m_decimator1 = new Decimator(m_increment, m_factor); // std::cerr << "DownBeat: decimator 1 factor " << m_factor << ", size " << m_increment << std::endl; return; } m_decimator1 = new Decimator(m_increment, highest); // std::cerr << "DownBeat: decimator 1 factor " << highest << ", size " << m_increment << std::endl; m_decimator2 = new Decimator(m_increment / highest, m_factor / highest); // std::cerr << "DownBeat: decimator 2 factor " << m_factor / highest << ", size " << m_increment / highest << std::endl; m_decbuf = new float[m_increment / highest]; } void DownBeat::pushAudioBlock(const float *audio) { if (m_buffill + (m_increment / m_factor) > m_bufsiz) { if (m_bufsiz == 0) m_bufsiz = m_increment * 16; else m_bufsiz = m_bufsiz * 2; if (!m_buffer) { m_buffer = (float *)malloc(m_bufsiz * sizeof(float)); } else { // std::cerr << "DownBeat::pushAudioBlock: realloc m_buffer to " << m_bufsiz << std::endl; m_buffer = (float *)realloc(m_buffer, m_bufsiz * sizeof(float)); } } if (!m_decimator1 && m_factor > 1) makeDecimators(); // float rmsin = 0, rmsout = 0; // for (int i = 0; i < m_increment; ++i) { // rmsin += audio[i] * audio[i]; // } if (m_decimator2) { m_decimator1->process(audio, m_decbuf); m_decimator2->process(m_decbuf, m_buffer + m_buffill); } else if (m_decimator1) { m_decimator1->process(audio, m_buffer + m_buffill); } else { // just copy across (m_factor is presumably 1) for (size_t i = 0; i < m_increment; ++i) { (m_buffer + m_buffill)[i] = audio[i]; } } // for (int i = 0; i < m_increment / m_factor; ++i) { // rmsout += m_buffer[m_buffill + i] * m_buffer[m_buffill + i]; // } // std::cerr << "pushAudioBlock: rms in " << sqrt(rmsin) << ", out " << sqrt(rmsout) << std::endl; m_buffill += m_increment / m_factor; } const float * DownBeat::getBufferedAudio(size_t &length) const { length = m_buffill; return m_buffer; } void DownBeat::resetAudioBuffer() { if (m_buffer) free(m_buffer); m_buffer = 0; m_buffill = 0; m_bufsiz = 0; } void DownBeat::findDownBeats(const float *audio, size_t audioLength, const d_vec_t &beats, i_vec_t &downbeats) { // FIND DOWNBEATS BY PARTITIONING THE INPUT AUDIO FILE INTO BEAT SEGMENTS // WHERE THE AUDIO FRAMES ARE DOWNSAMPLED BY A FACTOR OF 16 (fs ~= 2700Hz) // THEN TAKING THE JENSEN-SHANNON DIVERGENCE BETWEEN BEAT SYNCHRONOUS SPECTRAL FRAMES // IMPLEMENTATION (MOSTLY) FOLLOWS: // DAVIES AND PLUMBLEY "A SPECTRAL DIFFERENCE APPROACH TO EXTRACTING DOWNBEATS IN MUSICAL AUDIO" // EUSIPCO 2006, FLORENCE, ITALY d_vec_t newspec(m_beatframesize / 2); // magnitude spectrum of current beat d_vec_t oldspec(m_beatframesize / 2); // magnitude spectrum of previous beat m_beatsd.clear(); if (audioLength == 0) return; for (size_t i = 0; i + 1 < beats.size(); ++i) { // Copy the extents of the current beat from downsampled array // into beat frame buffer size_t beatstart = (beats[i] * m_increment) / m_factor; size_t beatend = (beats[i+1] * m_increment) / m_factor; if (beatend >= audioLength) beatend = audioLength - 1; if (beatend < beatstart) beatend = beatstart; size_t beatlen = beatend - beatstart; // Also apply a Hanning window to the beat frame buffer, sized // to the beat extents rather than the frame size. (Because // the size varies, it's easier to do this by hand than use // our Window abstraction.) // std::cerr << "beatlen = " << beatlen << std::endl; // float rms = 0; for (size_t j = 0; j < beatlen && j < m_beatframesize; ++j) { double mul = 0.5 * (1.0 - cos(TWO_PI * (double(j) / double(beatlen)))); m_beatframe[j] = audio[beatstart + j] * mul; // rms += m_beatframe[j] * m_beatframe[j]; } // rms = sqrt(rms); // std::cerr << "beat " << i << ": audio rms " << rms << std::endl; for (size_t j = beatlen; j < m_beatframesize; ++j) { m_beatframe[j] = 0.0; } // Now FFT beat frame m_fft->process(false, m_beatframe, m_fftRealOut, m_fftImagOut); // Calculate magnitudes for (size_t j = 0; j < m_beatframesize/2; ++j) { newspec[j] = sqrt(m_fftRealOut[j] * m_fftRealOut[j] + m_fftImagOut[j] * m_fftImagOut[j]); } // Preserve peaks by applying adaptive threshold MathUtilities::adaptiveThreshold(newspec); // Calculate JS divergence between new and old spectral frames if (i > 0) { // otherwise we have no previous frame m_beatsd.push_back(measureSpecDiff(oldspec, newspec)); // std::cerr << "specdiff: " << m_beatsd[m_beatsd.size()-1] << std::endl; } // Copy newspec across to old for (size_t j = 0; j < m_beatframesize/2; ++j) { oldspec[j] = newspec[j]; } } // We now have all spectral difference measures in specdiff int timesig = m_bpb; if (timesig == 0) timesig = 4; d_vec_t dbcand(timesig); // downbeat candidates for (int beat = 0; beat < timesig; ++beat) { dbcand[beat] = 0; } // look for beat transition which leads to greatest spectral change for (int beat = 0; beat < timesig; ++beat) { int count = 0; for (int example = beat-1; example < (int)m_beatsd.size(); example += timesig) { if (example < 0) continue; dbcand[beat] += (m_beatsd[example]) / timesig; ++count; } if (count > 0) dbcand[beat] /= count; // std::cerr << "dbcand[" << beat << "] = " << dbcand[beat] << std::endl; } // first downbeat is beat at index of maximum value of dbcand int dbind = MathUtilities::getMax(dbcand); // remaining downbeats are at timesig intervals from the first for (int i = dbind; i < (int)beats.size(); i += timesig) { downbeats.push_back(i); } } double DownBeat::measureSpecDiff(d_vec_t oldspec, d_vec_t newspec) { // JENSEN-SHANNON DIVERGENCE BETWEEN SPECTRAL FRAMES unsigned int SPECSIZE = 512; // ONLY LOOK AT FIRST 512 SAMPLES OF SPECTRUM. if (SPECSIZE > oldspec.size()/4) { SPECSIZE = oldspec.size()/4; } double SD = 0.; double sd1 = 0.; double sumnew = 0.; double sumold = 0.; for (unsigned int i = 0;i < SPECSIZE;i++) { newspec[i] +=EPS; oldspec[i] +=EPS; sumnew+=newspec[i]; sumold+=oldspec[i]; } for (unsigned int i = 0;i < SPECSIZE;i++) { newspec[i] /= (sumnew); oldspec[i] /= (sumold); // IF ANY SPECTRAL VALUES ARE 0 (SHOULDN'T BE ANY!) SET THEM TO 1 if (newspec[i] == 0) { newspec[i] = 1.; } if (oldspec[i] == 0) { oldspec[i] = 1.; } // JENSEN-SHANNON CALCULATION sd1 = 0.5*oldspec[i] + 0.5*newspec[i]; SD = SD + (-sd1*log(sd1)) + (0.5*(oldspec[i]*log(oldspec[i]))) + (0.5*(newspec[i]*log(newspec[i]))); } return SD; } void DownBeat::getBeatSD(vector<double> &beatsd) const { for (int i = 0; i < (int)m_beatsd.size(); ++i) beatsd.push_back(m_beatsd[i]); }