Mercurial > hg > qm-dsp
view dsp/chromagram/ConstantQ.cpp @ 487:5998ee1042d3
Use M_PI
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Fri, 31 May 2019 16:33:55 +0100 |
parents | fdaa63607c15 |
children | 1bea13b8f951 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* QM DSP Library Centre for Digital Music, Queen Mary, University of London. This file 2005-2006 Christian Landone. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "ConstantQ.h" #include "dsp/transforms/FFT.h" #include <iostream> //--------------------------------------------------------------------------- // nextpow2 returns the smallest integer n such that 2^n >= x. static double nextpow2(double x) { double y = ceil(log(x)/log(2.0)); return(y); } static double squaredModule(const double & xx, const double & yy) { return xx*xx + yy*yy; } //---------------------------------------------------------------------------- ConstantQ::ConstantQ( CQConfig Config ) : m_sparseKernel(0) { initialise( Config ); } ConstantQ::~ConstantQ() { deInitialise(); } //---------------------------------------------------------------------------- void ConstantQ::sparsekernel() { // std::cerr << "ConstantQ: initialising sparse kernel, uK = " << m_uK << ", FFTLength = " << m_FFTLength << "..."; SparseKernel *sk = new SparseKernel(); //generates spectral kernel matrix (upside down?) // initialise temporal kernel with zeros, twice length to deal w. complex numbers double* hammingWindowRe = new double [ m_FFTLength ]; double* hammingWindowIm = new double [ m_FFTLength ]; double* transfHammingWindowRe = new double [ m_FFTLength ]; double* transfHammingWindowIm = new double [ m_FFTLength ]; for (unsigned u=0; u < m_FFTLength; u++) { hammingWindowRe[u] = 0; hammingWindowIm[u] = 0; } // Here, fftleng*2 is a guess of the number of sparse cells in the matrix // The matrix K x fftlength but the non-zero cells are an antialiased // square root function. So mostly is a line, with some grey point. sk->is.reserve( m_FFTLength*2 ); sk->js.reserve( m_FFTLength*2 ); sk->real.reserve( m_FFTLength*2 ); sk->imag.reserve( m_FFTLength*2 ); // for each bin value K, calculate temporal kernel, take its fft to //calculate the spectral kernel then threshold it to make it sparse and //add it to the sparse kernels matrix double squareThreshold = m_CQThresh * m_CQThresh; FFT m_FFT(m_FFTLength); for (unsigned k = m_uK; k--; ) { for (unsigned u=0; u < m_FFTLength; u++) { hammingWindowRe[u] = 0; hammingWindowIm[u] = 0; } // Computing a hamming window const unsigned hammingLength = (int) ceil( m_dQ * m_FS / ( m_FMin * pow(2,((double)(k))/(double)m_BPO))); // cerr << "k = " << k << ", q = " << m_dQ << ", m_FMin = " << m_FMin << ", hammingLength = " << hammingLength << " (rounded up from " << (m_dQ * m_FS / ( m_FMin * pow(2,((double)(k))/(double)m_BPO))) << ")" << endl; unsigned origin = m_FFTLength/2 - hammingLength/2; for (unsigned i=0; i<hammingLength; i++) { const double angle = 2*M_PI*m_dQ*i/hammingLength; const double real = cos(angle); const double imag = sin(angle); const double absol = hamming(hammingLength, i)/hammingLength; hammingWindowRe[ origin + i ] = absol*real; hammingWindowIm[ origin + i ] = absol*imag; } for (unsigned i = 0; i < m_FFTLength/2; ++i) { double temp = hammingWindowRe[i]; hammingWindowRe[i] = hammingWindowRe[i + m_FFTLength/2]; hammingWindowRe[i + m_FFTLength/2] = temp; temp = hammingWindowIm[i]; hammingWindowIm[i] = hammingWindowIm[i + m_FFTLength/2]; hammingWindowIm[i + m_FFTLength/2] = temp; } //do fft of hammingWindow m_FFT.process( 0, hammingWindowRe, hammingWindowIm, transfHammingWindowRe, transfHammingWindowIm ); for (unsigned j=0; j<( m_FFTLength ); j++) { // perform thresholding const double squaredBin = squaredModule( transfHammingWindowRe[ j ], transfHammingWindowIm[ j ]); if (squaredBin <= squareThreshold) continue; // Insert non-zero position indexes sk->is.push_back(j); sk->js.push_back(k); // take conjugate, normalise and add to array sparkernel sk->real.push_back( transfHammingWindowRe[ j ]/m_FFTLength); sk->imag.push_back(-transfHammingWindowIm[ j ]/m_FFTLength); } } delete [] hammingWindowRe; delete [] hammingWindowIm; delete [] transfHammingWindowRe; delete [] transfHammingWindowIm; // std::cerr << "done\n -> is: " << sk->is.size() << ", js: " << sk->js.size() << ", reals: " << sk->real.size() << ", imags: " << sk->imag.size() << std::endl; m_sparseKernel = sk; return; } //----------------------------------------------------------------------------- double* ConstantQ::process( const double* fftdata ) { if (!m_sparseKernel) { std::cerr << "ERROR: ConstantQ::process: Sparse kernel has not been initialised" << std::endl; return m_CQdata; } SparseKernel *sk = m_sparseKernel; for (unsigned row=0; row<2*m_uK; row++) { m_CQdata[ row ] = 0; m_CQdata[ row+1 ] = 0; } const unsigned *fftbin = &(sk->is[0]); const unsigned *cqbin = &(sk->js[0]); const double *real = &(sk->real[0]); const double *imag = &(sk->imag[0]); const unsigned int sparseCells = sk->real.size(); for (unsigned i = 0; i<sparseCells; i++) { const unsigned row = cqbin[i]; const unsigned col = fftbin[i]; if (col == 0) continue; const double & r1 = real[i]; const double & i1 = imag[i]; const double & r2 = fftdata[ (2*m_FFTLength) - 2*col - 2 ]; const double & i2 = fftdata[ (2*m_FFTLength) - 2*col - 2 + 1 ]; // add the multiplication m_CQdata[ 2*row ] += (r1*r2 - i1*i2); m_CQdata[ 2*row+1] += (r1*i2 + i1*r2); } return m_CQdata; } void ConstantQ::initialise( CQConfig Config ) { m_FS = Config.FS; m_FMin = Config.min; // min freq m_FMax = Config.max; // max freq m_BPO = Config.BPO; // bins per octave m_CQThresh = Config.CQThresh;// ConstantQ threshold for kernel generation m_dQ = 1/(pow(2,(1/(double)m_BPO))-1); // Work out Q value for Filter bank m_uK = (unsigned int) ceil(m_BPO * log(m_FMax/m_FMin)/log(2.0)); // No. of constant Q bins // std::cerr << "ConstantQ::initialise: rate = " << m_FS << ", fmin = " << m_FMin << ", fmax = " << m_FMax << ", bpo = " << m_BPO << ", K = " << m_uK << ", Q = " << m_dQ << std::endl; // work out length of fft required for this constant Q Filter bank m_FFTLength = (int) pow(2, nextpow2(ceil( m_dQ*m_FS/m_FMin ))); m_hop = m_FFTLength/8; // std::cerr << "ConstantQ::initialise: -> fft length = " << m_FFTLength << ", hop = " << m_hop << std::endl; // allocate memory for cqdata m_CQdata = new double [2*m_uK]; } void ConstantQ::deInitialise() { delete [] m_CQdata; delete m_sparseKernel; } void ConstantQ::process(const double *FFTRe, const double* FFTIm, double *CQRe, double *CQIm) { if (!m_sparseKernel) { std::cerr << "ERROR: ConstantQ::process: Sparse kernel has not been initialised" << std::endl; return; } SparseKernel *sk = m_sparseKernel; for (unsigned row=0; row<m_uK; row++) { CQRe[ row ] = 0; CQIm[ row ] = 0; } const unsigned *fftbin = &(sk->is[0]); const unsigned *cqbin = &(sk->js[0]); const double *real = &(sk->real[0]); const double *imag = &(sk->imag[0]); const unsigned int sparseCells = sk->real.size(); for (unsigned i = 0; i<sparseCells; i++) { const unsigned row = cqbin[i]; const unsigned col = fftbin[i]; if (col == 0) continue; const double & r1 = real[i]; const double & i1 = imag[i]; const double & r2 = FFTRe[ m_FFTLength - col ]; const double & i2 = FFTIm[ m_FFTLength - col ]; // add the multiplication CQRe[ row ] += (r1*r2 - i1*i2); CQIm[ row ] += (r1*i2 + i1*r2); } }