view dsp/segmentation/cluster_melt.c @ 374:3e5f13ac984f

Add bandwidth, snr parameters
author Chris Cannam <c.cannam@qmul.ac.uk>
date Fri, 18 Oct 2013 14:57:48 +0100
parents d5014ab8b0e5
children e4a57215ddee
line wrap: on
line source
/*
 *  cluster.c
 *  cluster_melt
 *
 *  Created by Mark Levy on 21/02/2006.
 *  Copyright 2006 Centre for Digital Music, Queen Mary, University of London.

    This program is free software; you can redistribute it and/or
    modify it under the terms of the GNU General Public License as
    published by the Free Software Foundation; either version 2 of the
    License, or (at your option) any later version.  See the file
    COPYING included with this distribution for more information.
 *
 */

#include <stdlib.h>

#include "cluster_melt.h"

#define DEFAULT_LAMBDA 0.02;
#define DEFAULT_LIMIT 20;

double kldist(double* a, double* b, int n) {
	/* NB assume that all a[i], b[i] are non-negative
	because a, b represent probability distributions */
	double q, d;
	int i;
	
	d = 0;
	for (i = 0; i < n; i++)
	{
		q = (a[i] + b[i]) / 2.0;
		if (q > 0)
		{
			if (a[i] > 0)
				d += a[i] * log(a[i] / q);
			if (b[i] > 0)
				d += b[i] * log(b[i] / q);
		}
	}
	return d;		
}	

void cluster_melt(double *h, int m, int n, double *Bsched, int t, int k, int l, int *c) {
	double lambda, sum, beta, logsumexp, maxlp;
	int i, j, a, b, b0, b1, limit, B, it, maxiter, maxiter0, maxiter1;
	double** cl;	/* reference histograms for each cluster */
	int** nc;	/* neighbour counts for each histogram */
	double** lp;	/* soft assignment probs for each histogram */
	int* oldc;	/* previous hard assignments (to check convergence) */
	
	/* NB h is passed as a 1d row major array */
	
	/* parameter values */
	lambda = DEFAULT_LAMBDA;
	if (l > 0)
		limit = l;
	else
		limit = DEFAULT_LIMIT;		/* use default if no valid neighbourhood limit supplied */
	B = 2 * limit + 1;
	maxiter0 = 20;	/* number of iterations at initial temperature */
	maxiter1 = 5;	/* number of iterations at subsequent temperatures */
	
	/* allocate memory */	
	cl = (double**) malloc(k*sizeof(double*));
	for (i= 0; i < k; i++)
		cl[i] = (double*) malloc(m*sizeof(double));
	
	nc = (int**) malloc(n*sizeof(int*));
	for (i= 0; i < n; i++)
		nc[i] = (int*) malloc(k*sizeof(int));
	
	lp = (double**) malloc(n*sizeof(double*));
	for (i= 0; i < n; i++)
		lp[i] = (double*) malloc(k*sizeof(double));
	
	oldc = (int*) malloc(n * sizeof(int));
	
	/* initialise */
	for (i = 0; i < k; i++)
	{
		sum = 0;
		for (j = 0; j < m; j++)
		{
			cl[i][j] = rand();	/* random initial reference histograms */
			sum += cl[i][j] * cl[i][j];
		}
		sum = sqrt(sum);
		for (j = 0; j < m; j++)
		{
			cl[i][j] /= sum;	/* normalise */
		}
	}	
	//print_array(cl, k, m);
	
	for (i = 0; i < n; i++)
		c[i] = 1;	/* initially assign all histograms to cluster 1 */
	
	for (a = 0; a < t; a++)
	{
		beta = Bsched[a];
		
		if (a == 0)
			maxiter = maxiter0;
		else
			maxiter = maxiter1;
		
		for (it = 0; it < maxiter; it++)
		{
			//if (it == maxiter - 1)
			//	mexPrintf("hasn't converged after %d iterations\n", maxiter);
			
			for (i = 0; i < n; i++)
			{
				/* save current hard assignments */
				oldc[i] = c[i];
				
				/* calculate soft assignment logprobs for each cluster */
				sum = 0;
				for (j = 0; j < k; j++)
				{
					lp[i][ j] = -beta * kldist(cl[j], &h[i*m], m);
					
					/* update matching neighbour counts for this histogram, based on current hard assignments */
					/* old version:
					nc[i][j] = 0;	
					if (i >= limit && i <= n - 1 - limit)
					{
							for (b = i - limit; b <= i + limit; b++)
							{
								if (c[b] == j+1)
									nc[i][j]++;
							}
							nc[i][j] = B - nc[i][j];
					}
					*/
					b0 = i - limit;
					if (b0 < 0)
						b0 = 0;
					b1 = i + limit;
					if (b1 >= n)
						b1 = n - 1;
					nc[i][j] = b1 - b0 + 1;		/* = B except at edges */
					for (b = b0; b <= b1; b++)
						if (c[b] == j+1)
							nc[i][j]--;
					
					sum += exp(lp[i][j]);
				}
				
				/* normalise responsibilities and add duration logprior */
				logsumexp = log(sum);
				for (j = 0; j < k; j++)
					lp[i][j] -= logsumexp + lambda * nc[i][j];				
			}
			//print_array(lp, n, k);
			/*
			for (i = 0; i < n; i++)
			{
				 for (j = 0; j < k; j++)
					 mexPrintf("%d ", nc[i][j]);
				 mexPrintf("\n");
			} 
			*/
			
			
			/* update the assignments now that we know the duration priors
			based on the current assignments */
			for (i = 0; i < n; i++)
			{
				maxlp = lp[i][0];
				c[i] = 1;
				for (j = 1; j < k; j++)
					if (lp[i][j] > maxlp)
					{
						maxlp = lp[i][j];
						c[i] = j+1;
					}
			}
				
			/* break if assignments haven't changed */
			i = 0;
			while (i < n && oldc[i] == c[i])
				i++;
			if (i == n)
				break;
			
			/* update reference histograms now we know new responsibilities */
			for (j = 0; j < k; j++)
			{
				for (b = 0; b < m; b++)
				{
					cl[j][b] = 0;
					for (i = 0; i < n; i++)
					{
						cl[j][b] += exp(lp[i][j]) * h[i*m+b];
					}	
				}
				
				sum = 0;				
				for (i = 0; i < n; i++)
					sum += exp(lp[i][j]);
				for (b = 0; b < m; b++)
					cl[j][b] /= sum;	/* normalise */
			}	
			
			//print_array(cl, k, m);
			//mexPrintf("\n\n");
		}
	}
		
	/* free memory */
	for (i = 0; i < k; i++)
		free(cl[i]);
	free(cl);
	for (i = 0; i < n; i++)
		free(nc[i]);
	free(nc);
	for (i = 0; i < n; i++)
		free(lp[i]);
	free(lp);
	free(oldc);	
}