Mercurial > hg > qm-dsp
view dsp/rateconversion/TestResampler.cpp @ 371:33e9e964443c
Cache calculated filters
author | Chris Cannam <c.cannam@qmul.ac.uk> |
---|---|
date | Wed, 16 Oct 2013 13:33:36 +0100 |
parents | 192d6b3f4379 |
children | c1e98c18628a |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ #include "Resampler.h" #include "qm-dsp/base/Window.h" #include "qm-dsp/dsp/transforms/FFT.h" #include <iostream> #include <cmath> #define BOOST_TEST_DYN_LINK #define BOOST_TEST_MAIN #include <boost/test/unit_test.hpp> BOOST_AUTO_TEST_SUITE(TestResampler) using std::cout; using std::endl; using std::vector; void testResamplerOneShot(int sourceRate, int targetRate, int n, double *in, int m, double *expected, int skip) { vector<double> resampled = Resampler::resample(sourceRate, targetRate, in, n); if (skip == 0) { BOOST_CHECK_EQUAL(resampled.size(), m); } for (int i = 0; i < m; ++i) { BOOST_CHECK_SMALL(resampled[i + skip] - expected[i], 1e-8); } } void testResampler(int sourceRate, int targetRate, int n, double *in, int m, double *expected) { // Here we provide the input in chunks (of varying size) Resampler r(sourceRate, targetRate); int latency = r.getLatency(); int m1 = m + latency; int n1 = int((m1 * sourceRate) / targetRate); double *inPadded = new double[n1]; double *outPadded = new double[m1]; for (int i = 0; i < n1; ++i) { if (i < n) inPadded[i] = in[i]; else inPadded[i] = 0.0; } for (int i = 0; i < m1; ++i) { outPadded[i] = -999.0; } int chunkSize = 1; int got = 0; int i = 0; while (true) { got += r.process(inPadded + i, outPadded + got, chunkSize); i = i + chunkSize; chunkSize = chunkSize + 1; if (i >= n1) { break; } else if (i + chunkSize >= n1) { chunkSize = n1 - i; } else if (chunkSize > 15) { chunkSize = 1; } } BOOST_CHECK_EQUAL(got, m1); for (int i = latency; i < m1; ++i) { BOOST_CHECK_SMALL(outPadded[i] - expected[i-latency], 1e-8); } delete[] outPadded; delete[] inPadded; } BOOST_AUTO_TEST_CASE(sameRateOneShot) { double d[] = { 0, 0.1, -0.3, -0.4, -0.3, 0, 0.5, 0.2, 0.8, -0.1 }; testResamplerOneShot(4, 4, 10, d, 10, d, 0); } BOOST_AUTO_TEST_CASE(sameRate) { double d[] = { 0, 0.1, -0.3, -0.4, -0.3, 0, 0.5, 0.2, 0.8, -0.1 }; testResampler(4, 4, 10, d, 10, d); } BOOST_AUTO_TEST_CASE(interpolatedMisc) { // Interpolating any signal by N should give a signal in which // every Nth sample is the original signal double in[] = { 0, 0.1, -0.3, -0.4, -0.3, 0, 0.5, 0.2, 0.8, -0.1 }; int n = sizeof(in)/sizeof(in[0]); for (int factor = 2; factor < 10; ++factor) { vector<double> out = Resampler::resample(6, 6 * factor, in, n); for (int i = 0; i < n; ++i) { BOOST_CHECK_SMALL(out[i * factor] - in[i], 1e-5); } } } BOOST_AUTO_TEST_CASE(interpolatedSine) { // Interpolating a sinusoid should give us a sinusoid, once we've // dropped the first few samples double in[1000]; double out[2000]; for (int i = 0; i < 1000; ++i) { in[i] = sin(i * M_PI / 2.0); } for (int i = 0; i < 2000; ++i) { out[i] = sin(i * M_PI / 4.0); } testResamplerOneShot(8, 16, 1000, in, 200, out, 512); } BOOST_AUTO_TEST_CASE(decimatedSine) { // Decimating a sinusoid should give us a sinusoid, once we've // dropped the first few samples double in[2000]; double out[1000]; for (int i = 0; i < 2000; ++i) { in[i] = sin(i * M_PI / 8.0); } for (int i = 0; i < 1000; ++i) { out[i] = sin(i * M_PI / 4.0); } testResamplerOneShot(16, 8, 2000, in, 200, out, 256); } vector<double> squareWave(int rate, double freq, int n) { //!!! todo: hoist, test vector<double> v(n, 0.0); for (int h = 0; h < (rate/4)/freq; ++h) { double m = h * 2 + 1; double scale = 1.0 / m; for (int i = 0; i < n; ++i) { double s = scale * sin((i * 2.0 * M_PI * m * freq) / rate); v[i] += s; } } return v; } void testSpectrum(int inrate, int outrate) { // One second of a square wave int freq = 500; std::cerr << "inrate = " << inrate << ", outrate = " << outrate << ", freq * outrate / inrate = " << (double(freq) * double(outrate)) / double(inrate) << std::endl; std::cerr << "making square wave... "; vector<double> square = squareWave(inrate, freq, inrate); std::cerr << "done" << std::endl; vector<double> maybeSquare = Resampler::resample(inrate, outrate, square.data(), square.size()); BOOST_CHECK_EQUAL(maybeSquare.size(), outrate); Window<double>(HanningWindow, inrate).cut(square.data()); Window<double>(HanningWindow, outrate).cut(maybeSquare.data()); // forward magnitude with size inrate, outrate vector<double> inSpectrum(inrate, 0.0); FFTReal(inrate).forwardMagnitude(square.data(), inSpectrum.data()); for (int i = 0; i < inSpectrum.size(); ++i) { inSpectrum[i] /= inrate; } vector<double> outSpectrum(outrate, 0.0); FFTReal(outrate).forwardMagnitude(maybeSquare.data(), outSpectrum.data()); for (int i = 0; i < outSpectrum.size(); ++i) { outSpectrum[i] /= outrate; } // Don't compare bins any higher than 99% of Nyquist freq of lower sr int lengthOfInterest = (inrate < outrate ? inrate : outrate) / 2; lengthOfInterest = lengthOfInterest - (lengthOfInterest / 100); /* std::cerr << "inSpectrum:" << std::endl; for (int i = 0; i < lengthOfInterest; ++i) { if (i % 5 == 0) std::cerr << std::endl << i << ": "; std::cerr << inSpectrum[i] << " "; } std::cerr << "\noutSpectrum:" << std::endl; for (int i = 0; i < lengthOfInterest; ++i) { if (i % 5 == 0) std::cerr << std::endl << i << ": "; std::cerr << outSpectrum[i] << " "; } std::cerr << std::endl; */ for (int i = 0; i < lengthOfInterest; ++i) { BOOST_CHECK_SMALL(inSpectrum[i] - outSpectrum[i], 1e-7); } } BOOST_AUTO_TEST_CASE(spectrum) { int rates[] = { 8000, 22050, 44100, 48000 }; for (int i = 0; i < sizeof(rates)/sizeof(rates[0]); ++i) { for (int j = 0; j < sizeof(rates)/sizeof(rates[0]); ++j) { testSpectrum(rates[i], rates[j]); } } } BOOST_AUTO_TEST_SUITE_END()