Mercurial > hg > qm-dsp
view dsp/rateconversion/Resampler.cpp @ 363:2fe2ab316c8e
Add one-shot resample function
author | Chris Cannam <c.cannam@qmul.ac.uk> |
---|---|
date | Sun, 13 Oct 2013 12:47:50 +0100 |
parents | 3953f3ef1b62 |
children | 7fe0da91e9c3 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ #include "Resampler.h" #include "qm-dsp/maths/MathUtilities.h" #include "qm-dsp/base/KaiserWindow.h" #include "qm-dsp/base/SincWindow.h" #include <iostream> #include <vector> using std::vector; Resampler::Resampler(int sourceRate, int targetRate) : m_sourceRate(sourceRate), m_targetRate(targetRate) { initialise(); } Resampler::~Resampler() { delete[] m_buffer; delete[] m_phaseData; } void Resampler::initialise() { int higher = std::max(m_sourceRate, m_targetRate); int lower = std::min(m_sourceRate, m_targetRate); m_gcd = MathUtilities::gcd(lower, higher); int peakToPole = higher / m_gcd; KaiserWindow::Parameters params = KaiserWindow::parametersForBandwidth(100, 0.02, peakToPole); params.length = (params.length % 2 == 0 ? params.length + 1 : params.length); m_filterLength = params.length; KaiserWindow kw(params); SincWindow sw(m_filterLength, peakToPole * 2); double *filter = new double[m_filterLength]; for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0; sw.cut(filter); kw.cut(filter); int inputSpacing = m_targetRate / m_gcd; int outputSpacing = m_sourceRate / m_gcd; m_latency = int((m_filterLength / 2) / outputSpacing); m_bufferLength = 0; m_phaseData = new Phase[inputSpacing]; for (int phase = 0; phase < inputSpacing; ++phase) { Phase p; p.nextPhase = phase - outputSpacing; while (p.nextPhase < 0) p.nextPhase += inputSpacing; p.nextPhase %= inputSpacing; p.drop = int(ceil(std::max(0, outputSpacing - phase) / inputSpacing)); p.take = int((outputSpacing + ((m_filterLength - 1 - phase) % inputSpacing)) / outputSpacing); int filtZipLength = int(ceil((m_filterLength - phase) / inputSpacing)); if (filtZipLength > m_bufferLength) { m_bufferLength = filtZipLength; } for (int i = 0; i < filtZipLength; ++i) { p.filter.push_back(filter[i * inputSpacing + phase]); } m_phaseData[phase] = p; } delete[] filter; // The May implementation of this uses a pull model -- we ask the // resampler for a certain number of output samples, and it asks // its source stream for as many as it needs to calculate // those. This means (among other things) that the source stream // can be asked for enough samples up-front to fill the buffer // before the first output sample is generated. // // In this implementation we're using a push model in which a // certain number of source samples is provided and we're asked // for as many output samples as that makes available. But we // can't return any samples from the beginning until half the // filter length has been provided as input. This means we must // either return a very variable number of samples (none at all // until the filter fills, then half the filter length at once) or // else have a lengthy declared latency on the output. We do the // latter. (What do other implementations do?) m_phase = m_filterLength % inputSpacing; m_buffer = new double[m_bufferLength]; for (int i = 0; i < m_bufferLength; ++i) m_buffer[i] = 0.0; } double Resampler::reconstructOne(const double **srcptr) { Phase &pd = m_phaseData[m_phase]; double *filt = pd.filter.data(); int n = pd.filter.size(); double v = 0.0; for (int i = 0; i < n; ++i) { v += m_buffer[i] * filt[i]; } for (int i = pd.drop; i < n; ++i) { m_buffer[i - pd.drop] = m_buffer[i]; } for (int i = 0; i < pd.take; ++i) { m_buffer[n - pd.drop + i] = **srcptr; ++ *srcptr; } m_phase = pd.nextPhase; return v; } int Resampler::process(const double *src, double *dst, int n) { int m = 0; const double *srcptr = src; while (n > m_phaseData[m_phase].take) { std::cerr << "n = " << n << ", m = " << m << ", take = " << m_phaseData[m_phase].take << std::endl; n -= m_phaseData[m_phase].take; dst[m] = reconstructOne(&srcptr); std::cerr << "n -> " << n << std::endl; ++m; } //!!! save any excess return m; } std::vector<double> Resampler::resample(int sourceRate, int targetRate, const double *data, int n) { Resampler r(sourceRate, targetRate); int latency = r.getLatency(); int m = int(ceil((n * targetRate) / sourceRate)); int m1 = m + latency; int n1 = int((m1 * sourceRate) / targetRate); vector<double> pad(n1 - n, 0.0); vector<double> out(m1, 0.0); int got = r.process(data, out.data(), n); got += r.process(pad.data(), out.data() + got, pad.size()); return vector<double>(out.begin() + latency, out.begin() + got); }