view dsp/tempotracking/TempoTrack.h @ 298:255e431ae3d4

* Key detector: when returning key strengths, use the peak value of the three underlying chromagram correlations (from 36-bin chromagram) corresponding to each key, instead of the mean. Rationale: This is the same method as used when returning the key value, and it's nice to have the same results in both returned value and plot. The peak performed better than the sum with a simple test set of triads, so it seems reasonable to change the plot to match the key output rather than the other way around. * FFT: kiss_fftr returns only the non-conjugate bins, synthesise the rest rather than leaving them (perhaps dangerously) undefined. Fixes an uninitialised data error in chromagram that could cause garbage results from key detector. * Constant Q: remove precalculated values again, I reckon they're not proving such a good tradeoff.
author Chris Cannam <c.cannam@qmul.ac.uk>
date Fri, 05 Jun 2009 15:12:39 +0000
parents 330c2e11f8a9
children e5907ae6de17
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*-  vi:set ts=8 sts=4 sw=4: */

/*
    QM DSP Library

    Centre for Digital Music, Queen Mary, University of London.
    This file copyright 2005-2006 Christian Landone.
    All rights reserved.
*/

#ifndef TEMPOTRACK_H
#define TEMPOTRACK_H


#include <stdio.h>
#include <vector>

#include "dsp/signalconditioning/DFProcess.h"
#include "maths/Correlation.h"
#include "dsp/signalconditioning/Framer.h"



using std::vector;

struct WinThresh
{
    unsigned int pre;
    unsigned int  post;
};

struct TTParams
{
    unsigned int winLength; //Analysis window length
    unsigned int lagLength; //Lag & Stride size
    unsigned int alpha; //alpha-norm parameter
    unsigned int LPOrd; // low-pass Filter order
    double* LPACoeffs; //low pass Filter den coefficients
    double* LPBCoeffs; //low pass Filter num coefficients
    WinThresh WinT;//window size in frames for adaptive thresholding [pre post]:
};


class TempoTrack  
{
public:
    TempoTrack( TTParams Params );
    virtual ~TempoTrack();

    vector<int> process( vector <double> DF, vector <double> *tempoReturn = 0);

	
private:
    void initialise( TTParams Params );
    void deInitialise();

    int beatPredict( unsigned int FSP, double alignment, double period, unsigned int step);
    int phaseMM( double* DF, double* weighting, unsigned int winLength, double period );
    void createPhaseExtractor( double* Filter, unsigned int winLength,  double period,  unsigned int fsp, unsigned int lastBeat );
    int findMeter( double* ACF,  unsigned int len, double period );
    void constDetect( double* periodP, int currentIdx, int* flag );
    void stepDetect( double* periodP, double* periodG, int currentIdx, int* flag );
    void createCombFilter( double* Filter, unsigned int winLength, unsigned int TSig, double beatLag );
    double tempoMM( double* ACF, double* weight, int sig );
	
    unsigned int m_dataLength;
    unsigned int m_winLength;
    unsigned int m_lagLength;

    double		 m_rayparam;
    double		 m_sigma;
    double		 m_DFWVNnorm;

    vector<int>	 m_beats; // Vector of detected beats

    double m_lockedTempo;

    double* m_tempoScratch;
    double* m_smoothRCF; // Smoothed Output of Comb Filterbank (m_tempoScratch)
	
    // Processing Buffers 
    double* m_rawDFFrame; // Original Detection Function Analysis Frame
    double* m_smoothDFFrame; // Smoothed Detection Function Analysis Frame
    double* m_frameACF; // AutoCorrelation of Smoothed Detection Function 

    //Low Pass Coefficients for DF Smoothing
    double* m_ACoeffs;
    double* m_BCoeffs;
	
    // Objetcs/operators declaration
    Framer m_DFFramer;
    DFProcess* m_DFConditioning;
    Correlation m_correlator;
    // Config structure for DFProcess
    DFProcConfig m_DFPParams;

	// also want to smooth m_tempoScratch 
    DFProcess* m_RCFConditioning;
    // Config structure for RCFProcess
    DFProcConfig m_RCFPParams;



};

#endif