Mercurial > hg > qm-dsp
view dsp/segmentation/ClusterMeltSegmenter.h @ 298:255e431ae3d4
* Key detector: when returning key strengths, use the peak value of the
three underlying chromagram correlations (from 36-bin chromagram)
corresponding to each key, instead of the mean.
Rationale: This is the same method as used when returning the key value,
and it's nice to have the same results in both returned value and plot.
The peak performed better than the sum with a simple test set of triads,
so it seems reasonable to change the plot to match the key output rather
than the other way around.
* FFT: kiss_fftr returns only the non-conjugate bins, synthesise the rest
rather than leaving them (perhaps dangerously) undefined. Fixes an
uninitialised data error in chromagram that could cause garbage results
from key detector.
* Constant Q: remove precalculated values again, I reckon they're not
proving such a good tradeoff.
author | Chris Cannam <c.cannam@qmul.ac.uk> |
---|---|
date | Fri, 05 Jun 2009 15:12:39 +0000 |
parents | befe5aa6b450 |
children | e5907ae6de17 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* * ClusterMeltSegmenter.h * * Created by Mark Levy on 23/03/2006. * Copyright 2006 Centre for Digital Music, Queen Mary, University of London. * All rights reserved. */ #include <vector> #include "segment.h" #include "Segmenter.h" #include "hmm/hmm.h" #include "base/Window.h" using std::vector; class Decimator; class ConstantQ; class MFCC; class FFTReal; class ClusterMeltSegmenterParams // defaults are sensible for 11025Hz with 0.2 second hopsize { public: ClusterMeltSegmenterParams() : featureType(FEATURE_TYPE_CONSTQ), hopSize(0.2), windowSize(0.6), fmin(62), fmax(16000), nbins(8), ncomponents(20), nHMMStates(40), nclusters(10), histogramLength(15), neighbourhoodLimit(20) { } feature_types featureType; double hopSize; // in secs double windowSize; // in secs int fmin; int fmax; int nbins; int ncomponents; int nHMMStates; int nclusters; int histogramLength; int neighbourhoodLimit; }; class ClusterMeltSegmenter : public Segmenter { public: ClusterMeltSegmenter(ClusterMeltSegmenterParams params); virtual ~ClusterMeltSegmenter(); virtual void initialise(int samplerate); virtual int getWindowsize(); virtual int getHopsize(); virtual void extractFeatures(const double* samples, int nsamples); void setFeatures(const vector<vector<double> >& f); // provide the features yourself virtual void segment(); // segment into default number of segment-types void segment(int m); // segment into m segment-types int getNSegmentTypes() { return nclusters; } protected: void makeSegmentation(int* q, int len); void extractFeaturesConstQ(const double *, int); void extractFeaturesMFCC(const double *, int); Window<double> *window; FFTReal *fft; ConstantQ* constq; MFCC* mfcc; model_t* model; // the HMM int* q; // the decoded HMM state sequence vector<vector<double> > histograms; feature_types featureType; double hopSize; // in seconds double windowSize; // in seconds // constant-Q parameters int fmin; int fmax; int nbins; int ncoeff; // PCA parameters int ncomponents; // HMM parameters int nHMMStates; // clustering parameters int nclusters; int histogramLength; int neighbourhoodLimit; Decimator *decimator; };