Mercurial > hg > qm-dsp
view tests/TestPhaseVocoder.cpp @ 467:1db23b9a8da4
Fix mismatch between time- and frequency-domain versions of the
chromagram process method - the frequency-domain one expects fftshifted
input and the kernel is set up for that, but the time-domain one wasn't
doing it
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 29 May 2019 15:56:30 +0100 |
parents | 3c7338aff6a8 |
children | 2de6184b2ce0 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ #include "dsp/phasevocoder/PhaseVocoder.h" #include "base/Window.h" #include <iostream> using std::cerr; using std::endl; #define BOOST_TEST_DYN_LINK #define BOOST_TEST_MAIN #include <boost/test/unit_test.hpp> BOOST_AUTO_TEST_SUITE(TestFFT) #define COMPARE_CONST(a, n) \ for (int cmp_i = 0; cmp_i < (int)(sizeof(a)/sizeof(a[0])); ++cmp_i) { \ BOOST_CHECK_SMALL(a[cmp_i] - n, 1e-7); \ } #define COMPARE_ARRAY(a, b) \ for (int cmp_i = 0; cmp_i < (int)(sizeof(a)/sizeof(a[0])); ++cmp_i) { \ BOOST_CHECK_SMALL(a[cmp_i] - b[cmp_i], 1e-7); \ } #define COMPARE_ARRAY_EXACT(a, b) \ for (int cmp_i = 0; cmp_i < (int)(sizeof(a)/sizeof(a[0])); ++cmp_i) { \ BOOST_CHECK_EQUAL(a[cmp_i], b[cmp_i]); \ } BOOST_AUTO_TEST_CASE(fullcycle) { // Cosine with one cycle exactly equal to pvoc hopsize. This is // pretty much the most trivial case -- in fact it's // indistinguishable from totally silent input (in the phase // values) because the measured phases are zero throughout. // We aren't windowing the input frame because (for once) it // actually *is* just a short part of a continuous infinite // sinusoid. double frame[] = { 1, 0, -1, 0, 1, 0, -1, 0 }; PhaseVocoder pvoc(8, 4); // Make these arrays one element too long at each end, so as to // test for overruns. For frame size 8, we expect 8/2+1 = 5 // mag/phase pairs. double mag[] = { 999, 999, 999, 999, 999, 999, 999 }; double phase[] = { 999, 999, 999, 999, 999, 999, 999 }; double unw[] = { 999, 999, 999, 999, 999, 999, 999 }; pvoc.processTimeDomain(frame, mag + 1, phase + 1, unw + 1); double magExpected0[] = { 999, 0, 0, 4, 0, 0, 999 }; COMPARE_ARRAY_EXACT(mag, magExpected0); double phaseExpected0[] = { 999, 0, 0, 0, 0, 0, 999 }; COMPARE_ARRAY(phase, phaseExpected0); double unwExpected0[] = { 999, 0, 0, 0, 0, 0, 999 }; COMPARE_ARRAY(unw, unwExpected0); pvoc.processTimeDomain(frame, mag + 1, phase + 1, unw + 1); double magExpected1[] = { 999, 0, 0, 4, 0, 0, 999 }; COMPARE_ARRAY_EXACT(mag, magExpected1); double phaseExpected1[] = { 999, 0, 0, 0, 0, 0, 999 }; COMPARE_ARRAY(phase, phaseExpected1); // Derivation of unwrapped values: // // * Bin 0 (DC) always has phase 0 and expected phase 0 // // * Bin 1 has expected phase pi (the hop size is half a cycle at // its frequency), but measured phase 0 (because there is no // signal in that bin). So it has phase error -pi, which is // mapped into (-pi,pi] range as pi, giving an unwrapped phase // of 2*pi. // // * Bin 2 has expected phase 2*pi, measured phase 0, hence error // 0 and unwrapped phase 2*pi. // // * Bin 3 is like bin 1: it has expected phase 3*pi, measured // phase 0, so phase error -pi and unwrapped phase 4*pi. // // * Bin 4 (Nyquist) has expected phase 4*pi, measured phase 0, // hence error 0 and unwrapped phase 4*pi. double unwExpected1[] = { 999, 0, 2*M_PI, 2*M_PI, 4*M_PI, 4*M_PI, 999 }; COMPARE_ARRAY(unw, unwExpected1); pvoc.processTimeDomain(frame, mag + 1, phase + 1, unw + 1); double magExpected2[] = { 999, 0, 0, 4, 0, 0, 999 }; COMPARE_ARRAY_EXACT(mag, magExpected2); double phaseExpected2[] = { 999, 0, 0, 0, 0, 0, 999 }; COMPARE_ARRAY(phase, phaseExpected2); double unwExpected2[] = { 999, 0, 4*M_PI, 4*M_PI, 8*M_PI, 8*M_PI, 999 }; COMPARE_ARRAY(unw, unwExpected2); } BOOST_AUTO_TEST_CASE(overlapping) { // Sine (i.e. cosine starting at phase -pi/2) starting with the // first sample, introducing a cosine of half the frequency // starting at the fourth sample, i.e. the second hop. The cosine // is introduced "by magic", i.e. it doesn't appear in the second // half of the first frame (it would have quite strange effects on // the first frame if it did). double data[32] = { // 3 x 8-sample frames which we pretend are overlapping 0, 1, 0, -1, 0, 1, 0, -1, 1, 1.70710678, 0, -1.70710678, -1, 0.29289322, 0, -0.29289322, -1, 0.29289322, 0, -0.29289322, 1, 1.70710678, 0, -1.70710678, }; PhaseVocoder pvoc(8, 4); // Make these arrays one element too long at each end, so as to // test for overruns. For frame size 8, we expect 8/2+1 = 5 // mag/phase pairs. double mag[] = { 999, 999, 999, 999, 999, 999, 999 }; double phase[] = { 999, 999, 999, 999, 999, 999, 999 }; double unw[] = { 999, 999, 999, 999, 999, 999, 999 }; pvoc.processTimeDomain(data, mag + 1, phase + 1, unw + 1); double magExpected0[] = { 999, 0, 0, 4, 0, 0, 999 }; COMPARE_ARRAY(mag, magExpected0); double phaseExpected0[] = { 999, 0, 0, -M_PI/2 , 0, 0, 999 }; COMPARE_ARRAY(phase, phaseExpected0); double unwExpected0[] = { 999, 0, 0, -M_PI/2, 0, 0, 999 }; COMPARE_ARRAY(unw, unwExpected0); pvoc.processTimeDomain(data + 8, mag + 1, phase + 1, unw + 1); double magExpected1[] = { 999, 0, 4, 4, 0, 0, 999 }; COMPARE_ARRAY(mag, magExpected1); // Derivation of unwrapped values: // // * Bin 0 (DC) always has phase 0 and expected phase 0 // // * Bin 1 has a new signal, a cosine starting with phase 0. But // because of the "FFT shift" which the phase vocoder carries // out to place zero phase in the centre of the (usually // windowed) frame, and because a single cycle at this frequency // spans the whole frame, this bin actually has measured phase // of either pi or -pi. (The shift doesn't affect those // higher-frequency bins whose signals fit exact multiples of a // cycle into a frame.) This maps into (-pi,pi] as pi, which // matches the expected phase, hence unwrapped phase is also pi. // // * Bin 2 has expected phase 3pi/2 (being the previous measured // phase of -pi/2 plus advance of 2pi). It has the same measured // phase as last time around, -pi/2, which is consistent with // the expected phase, so the unwrapped phase is 3pi/2. // // * Bin 3 I don't really know about -- the magnitude here is 0, // but we get non-zero measured phase whose sign is // implementation-dependent // // * Bin 4 (Nyquist) has expected phase 4*pi, measured phase 0, // hence error 0 and unwrapped phase 4*pi. phase[1+3] = 0.0; // Because we aren't testing for this one double phaseExpected1[] = { 999, 0, -M_PI, -M_PI/2, 0, 0, 999 }; COMPARE_ARRAY(phase, phaseExpected1); double unwExpected1[] = { 999, 0, M_PI, 3*M_PI/2, 3*M_PI, 4*M_PI, 999 }; COMPARE_ARRAY(unw, unwExpected1); pvoc.processTimeDomain(data + 16, mag + 1, phase + 1, unw + 1); double magExpected2[] = { 999, 0, 4, 4, 0, 0, 999 }; COMPARE_ARRAY(mag, magExpected2); double phaseExpected2[] = { 999, 0, 0, -M_PI/2, 0, 0, 999 }; COMPARE_ARRAY(phase, phaseExpected2); double unwExpected2[] = { 999, 0, 2*M_PI, 7*M_PI/2, 6*M_PI, 8*M_PI, 999 }; COMPARE_ARRAY(unw, unwExpected2); } BOOST_AUTO_TEST_SUITE_END()