Mercurial > hg > qm-dsp
view dsp/tempotracking/TempoTrackV2.cpp @ 277:09bceb0aeff6
* Add Matthew's newer beat tracking implementation
author | Chris Cannam <c.cannam@qmul.ac.uk> |
---|---|
date | Tue, 20 Jan 2009 15:01:01 +0000 |
parents | |
children | 796170a9c8e4 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* QM DSP Library Centre for Digital Music, Queen Mary, University of London. This file copyright 2008-2009 Matthew Davies and QMUL. All rights reserved. */ #include "TempoTrackV2.h" #include <cmath> #include <cstdlib> //#define FRAMESIZE 512 //#define BIGFRAMESIZE 1024 #define TWOPI 6.283185307179586232 #define EPS 0.0000008 // just some arbitrary small number TempoTrackV2::TempoTrackV2() { } TempoTrackV2::~TempoTrackV2() { } void TempoTrackV2::adapt_thresh(d_vec_t &df) { d_vec_t smoothed(df.size()); int p_post = 7; int p_pre = 8; int t = std::min(static_cast<int>(df.size()),p_post); // what is smaller, p_post of df size. This is to avoid accessing outside of arrays // find threshold for first 't' samples, where a full average cannot be computed yet for (int i = 0;i <= t;i++) { int k = std::min((i+p_pre),static_cast<int>(df.size())); smoothed[i] = mean_array(df,1,k); } // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post] for (uint i = t+1;i < df.size()-p_post;i++) { smoothed[i] = mean_array(df,i-p_pre,i+p_post); } // for last few samples calculate threshold, again, not enough samples to do as above for (uint i = df.size()-p_post;i < df.size();i++) { int k = std::max((static_cast<int> (i) -p_post),1); smoothed[i] = mean_array(df,k,df.size()); } // subtract the threshold from the detection function and check that it is not less than 0 for (uint i = 0;i < df.size();i++) { df[i] -= smoothed[i]; if (df[i] < 0) { df[i] = 0; } } } double TempoTrackV2::mean_array(const d_vec_t &dfin,int start,int end) { double sum = 0.; // find sum for (int i = start;i < end+1;i++) { sum += dfin[i]; } return static_cast<double> (sum / (end - start + 1) ); // average and return } void TempoTrackV2::filter_df(d_vec_t &df) { d_vec_t a(3); d_vec_t b(3); d_vec_t lp_df(df.size()); //equivalent in matlab to [b,a] = butter(2,0.4); a[0] = 1.0000; a[1] = -0.3695; a[2] = 0.1958; b[0] = 0.2066; b[1] = 0.4131; b[2] = 0.2066; double inp1 = 0.; double inp2 = 0.; double out1 = 0.; double out2 = 0.; // forwards filtering for (uint i = 0;i < df.size();i++) { lp_df[i] = b[0]*df[i] + b[1]*inp1 + b[2]*inp2 - a[1]*out1 - a[2]*out2; inp2 = inp1; inp1 = df[i]; out2 = out1; out1 = lp_df[i]; } // copy forwards filtering to df... // but, time-reversed, ready for backwards filtering for (uint i = 0;i < df.size();i++) { df[i] = lp_df[df.size()-i]; } for (uint i = 0;i < df.size();i++) { lp_df[i] = 0.; } inp1 = 0.; inp2 = 0.; out1 = 0.; out2 = 0.; // backwards filetering on time-reversed df for (uint i = 0;i < df.size();i++) { lp_df[i] = b[0]*df[i] + b[1]*inp1 + b[2]*inp2 - a[1]*out1 - a[2]*out2; inp2 = inp1; inp1 = df[i]; out2 = out1; out1 = lp_df[i]; } // write the re-reversed (i.e. forward) version back to df for (uint i = 0;i < df.size();i++) { df[i] = lp_df[df.size()-i]; } } void TempoTrackV2::calculateBeatPeriod(const d_vec_t &df, d_vec_t &beat_period) { // to follow matlab.. split into 512 sample frames with a 128 hop size // calculate the acf, // then the rcf.. and then stick the rcfs as columns of a matrix // then call viterbi decoding with weight vector and transition matrix // and get best path uint wv_len = 128; double rayparam = 43.; // make rayleigh weighting curve d_vec_t wv(wv_len); for (uint i=0; i<wv.size(); i++) { wv[i] = (static_cast<double> (i) / pow(rayparam,2.)) * exp((-1.*pow(-static_cast<double> (i),2.)) / (2.*pow(rayparam,2.))); } uint winlen = 512; uint step = 128; d_mat_t rcfmat; int col_counter = -1; // main loop for beat period calculation for (uint i=0; i<(df.size()-winlen); i+=step) { // get dfframe d_vec_t dfframe(winlen); for (uint k=0; k<winlen; k++) { dfframe[k] = df[i+k]; } // get rcf vector for current frame d_vec_t rcf(wv_len); get_rcf(dfframe,wv,rcf); rcfmat.push_back( d_vec_t() ); // adds a new column col_counter++; for (uint j=0; j<rcf.size(); j++) { rcfmat[col_counter].push_back( rcf[j] ); } } // now call viterbi decoding function viterbi_decode(rcfmat,wv,beat_period); } void TempoTrackV2::get_rcf(const d_vec_t &dfframe_in, const d_vec_t &wv, d_vec_t &rcf) { // calculate autocorrelation function // then rcf // just hard code for now... don't really need separate functions to do this // make acf d_vec_t dfframe(dfframe_in); adapt_thresh(dfframe); d_vec_t acf(dfframe.size()); for (uint lag=0; lag<dfframe.size(); lag++) { double sum = 0.; double tmp = 0.; for (uint n=0; n<(dfframe.size()-lag); n++) { tmp = dfframe[n] * dfframe[n+lag]; sum += tmp; } acf[lag] = static_cast<double> (sum/ (dfframe.size()-lag)); } // for (uint i=0; i<dfframe.size(); i++) // { // cout << dfframe[i] << " " << acf[i] << endl; // } // cout << "~~~~~~~~~~~~~~" << endl; // now apply comb filtering int numelem = 4; // for (uint i = 1;i < 118;i++) // max beat period for (uint i = 2;i < rcf.size();i++) // max beat period { for (int a = 1;a <= numelem;a++) // number of comb elements { for (int b = 1-a;b <= a-1;b++) // general state using normalisation of comb elements { rcf[i-1] += ( acf[(a*i+b)-1]*wv[i-1] ) / (2.*a-1.); // calculate value for comb filter row } } } // apply adaptive threshold to rcf adapt_thresh(rcf); double rcfsum =0.; for (uint i=0; i<rcf.size(); i++) { // rcf[i] *= acf[i]; rcf[i] += EPS ; rcfsum += rcf[i]; } // normalise rcf to sum to unity for (uint i=0; i<rcf.size(); i++) { rcf[i] /= (rcfsum + EPS); } } void TempoTrackV2::viterbi_decode(const d_mat_t &rcfmat, const d_vec_t &wv, d_vec_t &beat_period) { // make transition matrix d_mat_t tmat; for (uint i=0;i<wv.size();i++) { tmat.push_back ( d_vec_t() ); // adds a new column for (uint j=0; j<wv.size(); j++) { tmat[i].push_back(0.); // fill with zeros initially } } double sigma = 8.; for (uint i=20;i <wv.size()-20; i++) { for (uint j=20; j<wv.size()-20; j++) { double mu = static_cast<double>(i); tmat[i][j] = exp( (-1.*pow((j-mu),2.)) / (2.*pow(sigma,2.)) ); } } d_mat_t delta; i_mat_t psi; for (uint i=0;i <rcfmat.size(); i++) { delta.push_back( d_vec_t()); psi.push_back( i_vec_t()); for (uint j=0; j<rcfmat[i].size(); j++) { delta[i].push_back(0.); // fill with zeros initially psi[i].push_back(0); // fill with zeros initially } } uint T = delta.size(); uint Q = delta[0].size(); // initialize first column of delta for (uint j=0; j<Q; j++) { delta[0][j] = wv[j] * rcfmat[0][j]; psi[0][j] = 0; } double deltasum = 0.; for (uint i=0; i<Q; i++) { deltasum += delta[0][i]; } for (uint i=0; i<Q; i++) { delta[0][i] /= (deltasum + EPS); } for (uint t=1; t<T; t++) { d_vec_t tmp_vec(Q); for (uint j=0; j<Q; j++) { for (uint i=0; i<Q; i++) { tmp_vec[i] = delta[t-1][i] * tmat[j][i]; } delta[t][j] = get_max_val(tmp_vec); psi[t][j] = get_max_ind(tmp_vec); delta[t][j] *= rcfmat[t][j]; } double deltasum = 0.; for (uint i=0; i<Q; i++) { deltasum += delta[t][i]; } for (uint i=0; i<Q; i++) { delta[t][i] /= (deltasum + EPS); } } // ofstream tmatfile; // tmatfile.open("/home/matthewd/Desktop/tmat.txt"); // for (uint i=0;i <delta.size(); i++) // { // for (uint j=0; j<delta[i].size(); j++) // { // tmatfile << rcfmat[i][j] << endl; // } // } // tmatfile.close(); i_vec_t bestpath(T); d_vec_t tmp_vec(Q); for (uint i=0; i<Q; i++) { tmp_vec[i] = delta[T-1][i]; } bestpath[T-1] = get_max_ind(tmp_vec); for (uint t=T-2; t>0 ;t--) { bestpath[t] = psi[t+1][bestpath[t+1]]; } // very weird hack! bestpath[0] = psi[1][bestpath[1]]; // for (uint i=0; i<bestpath.size(); i++) // { // cout << bestpath[i] << endl; // } uint lastind = 0; for (uint i=0; i<T; i++) { uint step = 128; // cout << bestpath[i] << " " << i << endl; for (uint j=0; j<step; j++) { lastind = i*step+j; beat_period[lastind] = bestpath[i]; } } //fill in the last values... for (uint i=lastind; i<beat_period.size(); i++) { beat_period[i] = beat_period[lastind]; } } double TempoTrackV2::get_max_val(const d_vec_t &df) { double maxval = 0.; for (uint i=0; i<df.size(); i++) { if (maxval < df[i]) { maxval = df[i]; } } return maxval; } int TempoTrackV2::get_max_ind(const d_vec_t &df) { double maxval = 0.; int ind = 0; for (uint i=0; i<df.size(); i++) { if (maxval < df[i]) { maxval = df[i]; ind = i; } } return ind; } void TempoTrackV2::normalise_vec(d_vec_t &df) { double sum = 0.; for (uint i=0; i<df.size(); i++) { sum += df[i]; } for (uint i=0; i<df.size(); i++) { df[i]/= (sum + EPS); } } void TempoTrackV2::calculateBeats(const d_vec_t &df, const d_vec_t &beat_period, d_vec_t &beats) { d_vec_t cumscore(df.size()); i_vec_t backlink(df.size()); d_vec_t localscore(df.size()); // WHEN I FIGURE OUT HOW, I'LL WANT TO DO SOME FILTERING ON THIS... for (uint i=0; i<df.size(); i++) { localscore[i] = df[i]; backlink[i] = -1; } double tightness = 4.; double alpha = 0.9; // main loop for (uint i=3*beat_period[0]; i<localscore.size(); i++) { int prange_min = -2*beat_period[i]; int prange_max = round(-0.5*beat_period[i]); d_vec_t txwt (prange_max - prange_min + 1); d_vec_t scorecands (txwt.size()); for (uint j=0;j<txwt.size();j++) { double mu = static_cast<double> (beat_period[i]); txwt[j] = exp( -0.5*pow(tightness * log((round(2*mu)-j)/mu),2)); scorecands[j] = txwt[j] * cumscore[i+prange_min+j]; } double vv = get_max_val(scorecands); int xx = get_max_ind(scorecands); cumscore[i] = alpha*vv + (1.-alpha)*localscore[i]; backlink[i] = i+prange_min+xx; } d_vec_t tmp_vec; for (uint i=cumscore.size() - beat_period[beat_period.size()-1] ; i<cumscore.size(); i++) { tmp_vec.push_back(cumscore[i]); } int startpoint = get_max_ind(tmp_vec) + cumscore.size() - beat_period[beat_period.size()-1] ; i_vec_t ibeats; ibeats.push_back(startpoint); while (backlink[ibeats.back()] > 3*beat_period[0]) { ibeats.push_back(backlink[ibeats.back()]); } for (uint i=0; i<ibeats.size(); i++) { beats.push_back( static_cast<double>(ibeats[i]) ); // cout << ibeats[i] << " " << beats[i] <<endl; } }