Mercurial > hg > qm-dsp
view dsp/keydetection/GetKeyMode.cpp @ 460:02cb97d2dee8
Remove now superfluid m_key array
author | Daniel Schürmann <daschuer@mixxx.org> |
---|---|
date | Fri, 24 May 2019 21:06:47 +0200 |
parents | b7e10277a84c |
children | 9414df58fd0e |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Copyright (c) 2005 Centre for Digital Music ( C4DM ) Queen Mary Univesrity of London This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ // GetKeyMode.cpp: implementation of the CGetKeyMode class. // ////////////////////////////////////////////////////////////////////// #include "GetKeyMode.h" #include "maths/MathUtilities.h" #include "base/Pitch.h" #include <iostream> #include <cstring> #include <cstdlib> static const int kBinsPerOctave = 36; // Chords profile static double MajProfile[kBinsPerOctave] = { 0.0384, 0.0629, 0.0258, 0.0121, 0.0146, 0.0106, 0.0364, 0.0610, 0.0267, 0.0126, 0.0121, 0.0086, 0.0364, 0.0623, 0.0279, 0.0275, 0.0414, 0.0186, 0.0173, 0.0248, 0.0145, 0.0364, 0.0631, 0.0262, 0.0129, 0.0150, 0.0098, 0.0312, 0.0521, 0.0235, 0.0129, 0.0142, 0.0095, 0.0289, 0.0478, 0.0239}; static double MinProfile[kBinsPerOctave] = { 0.0375, 0.0682, 0.0299, 0.0119, 0.0138, 0.0093, 0.0296, 0.0543, 0.0257, 0.0292, 0.0519, 0.0246, 0.0159, 0.0234, 0.0135, 0.0291, 0.0544, 0.0248, 0.0137, 0.0176, 0.0104, 0.0352, 0.0670, 0.0302, 0.0222, 0.0349, 0.0164, 0.0174, 0.0297, 0.0166, 0.0222, 0.0401, 0.0202, 0.0175, 0.0270, 0.0146}; // ////////////////////////////////////////////////////////////////////// // Construction/Destruction ////////////////////////////////////////////////////////////////////// GetKeyMode::GetKeyMode( int sampleRate, float tuningFrequency, double hpcpAverage, double medianAverage ) : m_hpcpAverage( hpcpAverage ), m_medianAverage( medianAverage ), m_ChrPointer(0), m_DecimatedBuffer(0), m_ChromaBuffer(0), m_MeanHPCP(0), m_MajCorr(0), m_MinCorr(0), m_MedianFilterBuffer(0), m_SortedBuffer(0), m_keyStrengths(0) { m_DecimationFactor = 8; // Chromagram configuration parameters m_ChromaConfig.normalise = MathUtilities::NormaliseUnitMax; m_ChromaConfig.FS = lrint(sampleRate/(double)m_DecimationFactor); if (m_ChromaConfig.FS < 1) { m_ChromaConfig.FS = 1; } // Set C (= MIDI #12) as our base : // This implies that key = 1 => Cmaj, key = 12 => Bmaj, key = 13 => Cmin, etc. m_ChromaConfig.min = Pitch::getFrequencyForPitch( 48, 0, tuningFrequency ); m_ChromaConfig.max = Pitch::getFrequencyForPitch( 96, 0, tuningFrequency ); m_ChromaConfig.BPO = kBinsPerOctave; m_ChromaConfig.CQThresh = 0.0054; // Chromagram inst. m_Chroma = new Chromagram( m_ChromaConfig ); // Get calculated parameters from chroma object m_ChromaFrameSize = m_Chroma->getFrameSize(); // override hopsize for this application m_ChromaHopSize = m_ChromaFrameSize; // std::cerr << "chroma frame size = " << m_ChromaFrameSize << ", decimation factor = " << m_DecimationFactor << " therefore block size = " << getBlockSize() << std::endl; // Chromagram average and estimated key median filter lengths m_ChromaBuffersize = (int)ceil( m_hpcpAverage * m_ChromaConfig.FS/m_ChromaFrameSize ); m_MedianWinsize = (int)ceil( m_medianAverage * m_ChromaConfig.FS/m_ChromaFrameSize ); // Reset counters m_bufferindex = 0; m_ChromaBufferFilling = 0; m_MedianBufferFilling = 0; // Spawn objectc/arrays m_DecimatedBuffer = new double[m_ChromaFrameSize]; m_ChromaBuffer = new double[kBinsPerOctave * m_ChromaBuffersize]; memset( m_ChromaBuffer, 0, sizeof(double) * kBinsPerOctave * m_ChromaBuffersize); m_MeanHPCP = new double[kBinsPerOctave]; m_MajCorr = new double[kBinsPerOctave]; m_MinCorr = new double[kBinsPerOctave]; m_MedianFilterBuffer = new int[ m_MedianWinsize ]; memset( m_MedianFilterBuffer, 0, sizeof(int)*m_MedianWinsize); m_SortedBuffer = new int[ m_MedianWinsize ]; memset( m_SortedBuffer, 0, sizeof(int)*m_MedianWinsize); m_Decimator = new Decimator( m_ChromaFrameSize*m_DecimationFactor, m_DecimationFactor ); m_keyStrengths = new double[24]; } GetKeyMode::~GetKeyMode() { delete m_Chroma; delete m_Decimator; delete [] m_DecimatedBuffer; delete [] m_ChromaBuffer; delete [] m_MeanHPCP; delete [] m_MajCorr; delete [] m_MinCorr; delete [] m_MedianFilterBuffer; delete [] m_SortedBuffer; delete [] m_keyStrengths; } double GetKeyMode::krumCorr(double *pData1, double *pData2, unsigned int length) { double retVal= 0.0; double num = 0; double den = 0; double mX = MathUtilities::mean( pData1, length ); double mY = MathUtilities::mean( pData2, length ); double sum1 = 0; double sum2 = 0; for( unsigned int i = 0; i <length; i++ ) { num += ( pData1[i] - mX ) * ( pData2[i] - mY ); sum1 += ( (pData1[i]-mX) * (pData1[i]-mX) ); sum2 += ( (pData2[i]-mY) * (pData2[i]-mY) ); } den = sqrt(sum1 * sum2); if( den>0 ) { retVal = num/den; } else { retVal = 0; } return retVal; } int GetKeyMode::process(double *PCMData) { int key; unsigned int j,k; ////////////////////////////////////////////// m_Decimator->process( PCMData, m_DecimatedBuffer); m_ChrPointer = m_Chroma->process( m_DecimatedBuffer ); // The Cromagram has the center of C at bin 0, while the major // and minor profiles have the center of C at 1. We want to have // the correlation for C result also at 1. // To achieve this we have to shift two times: MathUtilities::circShift( m_ChrPointer, kBinsPerOctave, 2); /* std::cout << "raw chroma: "; for (int ii = 0; ii < kBinsPerOctave; ++ii) { if (ii % (kBinsPerOctave/12) == 0) std::cout << "\n"; std::cout << m_ChrPointer[ii] << " "; } std::cout << std::endl; */ // populate hpcp values; int cbidx; for( j = 0; j < kBinsPerOctave; j++ ) { cbidx = (m_bufferindex * kBinsPerOctave) + j; m_ChromaBuffer[ cbidx ] = m_ChrPointer[j]; } //keep track of input buffers; if( m_bufferindex++ >= m_ChromaBuffersize - 1) { m_bufferindex = 0; } // track filling of chroma matrix if( m_ChromaBufferFilling++ >= m_ChromaBuffersize) { m_ChromaBufferFilling = m_ChromaBuffersize; } //calculate mean for( k = 0; k < kBinsPerOctave; k++ ) { double mnVal = 0.0; for( j = 0; j < m_ChromaBufferFilling; j++ ) { mnVal += m_ChromaBuffer[ k + (j*kBinsPerOctave) ]; } m_MeanHPCP[k] = mnVal/(double)m_ChromaBufferFilling; } for( k = 0; k < kBinsPerOctave; k++ ) { m_MajCorr[k] = krumCorr( m_MeanHPCP, MajProfile, kBinsPerOctave ); m_MinCorr[k] = krumCorr( m_MeanHPCP, MinProfile, kBinsPerOctave ); MathUtilities::circShift( MajProfile, kBinsPerOctave, 1 ); MathUtilities::circShift( MinProfile, kBinsPerOctave, 1 ); } /* std::cout << "raw keys: "; for (int ii = 0; ii < kBinsPerOctave; ++ii) { if (ii % (kBinsPerOctave/12) == 0) std::cout << "\n"; std::cout << m_MajCorr[ii] << " "; } for (int ii = 0; ii < kBinsPerOctave; ++ii) { if (ii % (kBinsPerOctave/12) == 0) std::cout << "\n"; std::cout << m_MinCorr[ii] << " "; } std::cout << std::endl; */ // m_MajCorr[1] is C center 1 / 3 + 1 = 1 // m_MajCorr[4] is D center 4 / 3 + 1 = 2 // '+ 1' because we number keys 1-24, not 0-23. double maxMaj; int maxMajBin = MathUtilities::getMax( m_MajCorr, kBinsPerOctave, &maxMaj ); double maxMin; int maxMinBin = MathUtilities::getMax( m_MinCorr, kBinsPerOctave, &maxMin ); int maxBin = (maxMaj > maxMin) ? maxMajBin : (maxMinBin + kBinsPerOctave); key = maxBin / 3 + 1; // std::cout << "fractional key pre-sorting: " << (maxBin + 2) / 3.0 << std::endl; // std::cout << "key pre-sorting: " << key << std::endl; //Median filtering // track Median buffer initial filling if( m_MedianBufferFilling++ >= m_MedianWinsize) { m_MedianBufferFilling = m_MedianWinsize; } //shift median buffer for( k = 1; k < m_MedianWinsize; k++ ) { m_MedianFilterBuffer[ k - 1 ] = m_MedianFilterBuffer[ k ]; } //write new key value into median buffer m_MedianFilterBuffer[ m_MedianWinsize - 1 ] = key; //Copy median into sorting buffer, reversed unsigned int ijx = 0; for( k = 0; k < m_MedianWinsize; k++ ) { m_SortedBuffer[k] = m_MedianFilterBuffer[m_MedianWinsize-1-ijx]; ijx++; } qsort(m_SortedBuffer, m_MedianBufferFilling, sizeof(unsigned int), MathUtilities::compareInt); /* std::cout << "sorted: "; for (int ii = 0; ii < m_MedianBufferFilling; ++ii) { std::cout << m_SortedBuffer[ii] << " "; } std::cout << std::endl; */ int sortlength = m_MedianBufferFilling; int midpoint = (int)ceil((double)sortlength/2); // std::cout << "midpoint = " << midpoint << endl; if( midpoint <= 0 ) { midpoint = 1; } key = m_SortedBuffer[midpoint-1]; // std::cout << "returning key = " << key << endl; return key; } bool GetKeyMode::isModeMinor( int key ) { return (key > 12); } unsigned int getChromaSize() { return kBinsPerOctave; } double* GetKeyMode::getKeyStrengths() { unsigned int k; for (k = 0; k < 24; ++k) { m_keyStrengths[k] = 0; } for( k = 0; k < kBinsPerOctave; k++ ) { int idx = k / (kBinsPerOctave/12); int rem = k % (kBinsPerOctave/12); if (rem == 0 || m_MajCorr[k] > m_keyStrengths[idx]) { m_keyStrengths[idx] = m_MajCorr[k]; } } for( k = 0; k < kBinsPerOctave; k++ ) { int idx = (k + kBinsPerOctave) / (kBinsPerOctave/12); int rem = k % (kBinsPerOctave/12); if (rem == 0 || m_MinCorr[k] > m_keyStrengths[idx]) { m_keyStrengths[idx] = m_MinCorr[k]; } } /* std::cout << "key strengths: "; for (int ii = 0; ii < 24; ++ii) { if (ii % 6 == 0) std::cout << "\n"; std::cout << m_keyStrengths[ii] << " "; } std::cout << std::endl; */ return m_keyStrengths; }