Mercurial > hg > qm-dsp
diff tests/TestPhaseVocoder.cpp @ 347:e3dedded9c4d
Merge from pvoc branch
author | Chris Cannam <c.cannam@qmul.ac.uk> |
---|---|
date | Fri, 04 Oct 2013 16:43:44 +0100 |
parents | 04d134031a15 |
children | 6ec45e85ed81 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/tests/TestPhaseVocoder.cpp Fri Oct 04 16:43:44 2013 +0100 @@ -0,0 +1,193 @@ +/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ + +#include "dsp/phasevocoder/PhaseVocoder.h" + +#include "base/Window.h" + +#include <iostream> + +using std::cerr; +using std::endl; + +#define BOOST_TEST_DYN_LINK +#define BOOST_TEST_MAIN + +#include <boost/test/unit_test.hpp> + +BOOST_AUTO_TEST_SUITE(TestFFT) + +#define COMPARE_CONST(a, n) \ + for (int cmp_i = 0; cmp_i < (int)(sizeof(a)/sizeof(a[0])); ++cmp_i) { \ + BOOST_CHECK_SMALL(a[cmp_i] - n, 1e-7); \ + } + +#define COMPARE_ARRAY(a, b) \ + for (int cmp_i = 0; cmp_i < (int)(sizeof(a)/sizeof(a[0])); ++cmp_i) { \ + BOOST_CHECK_SMALL(a[cmp_i] - b[cmp_i], 1e-7); \ + } + +#define COMPARE_ARRAY_EXACT(a, b) \ + for (int cmp_i = 0; cmp_i < (int)(sizeof(a)/sizeof(a[0])); ++cmp_i) { \ + BOOST_CHECK_EQUAL(a[cmp_i], b[cmp_i]); \ + } + +BOOST_AUTO_TEST_CASE(fullcycle) +{ + // Cosine with one cycle exactly equal to pvoc hopsize. This is + // pretty much the most trivial case -- in fact it's + // indistinguishable from totally silent input (in the phase + // values) because the measured phases are zero throughout. + + // We aren't windowing the input frame because (for once) it + // actually *is* just a short part of a continuous infinite + // sinusoid. + + double frame[] = { 1, 0, -1, 0, 1, 0, -1, 0 }; + + PhaseVocoder pvoc(8, 4); + + // Make these arrays one element too long at each end, so as to + // test for overruns. For frame size 8, we expect 8/2+1 = 5 + // mag/phase pairs. + double mag[] = { 999, 999, 999, 999, 999, 999, 999 }; + double phase[] = { 999, 999, 999, 999, 999, 999, 999 }; + double unw[] = { 999, 999, 999, 999, 999, 999, 999 }; + + pvoc.processTimeDomain(frame, mag + 1, phase + 1, unw + 1); + + double magExpected0[] = { 999, 0, 0, 4, 0, 0, 999 }; + COMPARE_ARRAY_EXACT(mag, magExpected0); + + double phaseExpected0[] = { 999, 0, 0, 0, 0, 0, 999 }; + COMPARE_ARRAY(phase, phaseExpected0); + + double unwExpected0[] = { 999, 0, 0, 0, 0, 0, 999 }; + COMPARE_ARRAY(unw, unwExpected0); + + pvoc.processTimeDomain(frame, mag + 1, phase + 1, unw + 1); + + double magExpected1[] = { 999, 0, 0, 4, 0, 0, 999 }; + COMPARE_ARRAY_EXACT(mag, magExpected1); + + double phaseExpected1[] = { 999, 0, 0, 0, 0, 0, 999 }; + COMPARE_ARRAY(phase, phaseExpected1); + + // Derivation of unwrapped values: + // + // * Bin 0 (DC) always has phase 0 and expected phase 0 + // + // * Bin 1 has expected phase pi (the hop size is half a cycle at + // its frequency), but measured phase 0 (because there is no + // signal in that bin). So it has phase error -pi, which is + // mapped into (-pi,pi] range as pi, giving an unwrapped phase + // of 2*pi. + // + // * Bin 2 has expected phase 2*pi, measured phase 0, hence error + // 0 and unwrapped phase 2*pi. + // + // * Bin 3 is like bin 1: it has expected phase 3*pi, measured + // phase 0, so phase error -pi and unwrapped phase 4*pi. + // + // * Bin 4 (Nyquist) has expected phase 4*pi, measured phase 0, + // hence error 0 and unwrapped phase 4*pi. + + double unwExpected1[] = { 999, 0, 2*M_PI, 2*M_PI, 4*M_PI, 4*M_PI, 999 }; + COMPARE_ARRAY(unw, unwExpected1); + + pvoc.processTimeDomain(frame, mag + 1, phase + 1, unw + 1); + + double magExpected2[] = { 999, 0, 0, 4, 0, 0, 999 }; + COMPARE_ARRAY_EXACT(mag, magExpected2); + + double phaseExpected2[] = { 999, 0, 0, 0, 0, 0, 999 }; + COMPARE_ARRAY(phase, phaseExpected2); + + double unwExpected2[] = { 999, 0, 4*M_PI, 4*M_PI, 8*M_PI, 8*M_PI, 999 }; + COMPARE_ARRAY(unw, unwExpected2); +} + +BOOST_AUTO_TEST_CASE(overlapping) +{ + // Sine (i.e. cosine starting at phase -pi/2) starting with the + // first sample, introducing a cosine of half the frequency + // starting at the fourth sample, i.e. the second hop. The cosine + // is introduced "by magic", i.e. it doesn't appear in the second + // half of the first frame (it would have quite strange effects on + // the first frame if it did). + + double data[32] = { // 3 x 8-sample frames which we pretend are overlapping + 0, 1, 0, -1, 0, 1, 0, -1, + 1, 1.70710678, 0, -1.70710678, -1, 0.29289322, 0, -0.29289322, + -1, 0.29289322, 0, -0.29289322, 1, 1.70710678, 0, -1.70710678, + }; + + PhaseVocoder pvoc(8, 4); + + // Make these arrays one element too long at each end, so as to + // test for overruns. For frame size 8, we expect 8/2+1 = 5 + // mag/phase pairs. + double mag[] = { 999, 999, 999, 999, 999, 999, 999 }; + double phase[] = { 999, 999, 999, 999, 999, 999, 999 }; + double unw[] = { 999, 999, 999, 999, 999, 999, 999 }; + + pvoc.processTimeDomain(data, mag + 1, phase + 1, unw + 1); + + double magExpected0[] = { 999, 0, 0, 4, 0, 0, 999 }; + COMPARE_ARRAY(mag, magExpected0); + + double phaseExpected0[] = { 999, 0, 0, -M_PI/2 , 0, 0, 999 }; + COMPARE_ARRAY(phase, phaseExpected0); + + double unwExpected0[] = { 999, 0, 0, -M_PI/2, 0, 0, 999 }; + COMPARE_ARRAY(unw, unwExpected0); + + pvoc.processTimeDomain(data + 8, mag + 1, phase + 1, unw + 1); + + double magExpected1[] = { 999, 0, 4, 4, 0, 0, 999 }; + COMPARE_ARRAY(mag, magExpected1); + + // Derivation of unwrapped values: + // + // * Bin 0 (DC) always has phase 0 and expected phase 0 + // + // * Bin 1 has a new signal, a cosine starting with phase 0. But + // because of the "FFT shift" which the phase vocoder carries + // out to place zero phase in the centre of the (usually + // windowed) frame, and because a single cycle at this frequency + // spans the whole frame, this bin actually has measured phase + // of either pi or -pi. (The shift doesn't affect those + // higher-frequency bins whose signals fit exact multiples of a + // cycle into a frame.) This maps into (-pi,pi] as pi, which + // matches the expected phase, hence unwrapped phase is also pi. + // + // * Bin 2 has expected phase 3pi/2 (being the previous measured + // phase of -pi/2 plus advance of 2pi). It has the same measured + // phase as last time around, -pi/2, which is consistent with + // the expected phase, so the unwrapped phase is 3pi/2. + //!!! + // * Bin 3 is a bit of a puzzle -- it has an effectively zero + // magnitude but a non-zero measured phase. Spectral leakage? + // + // * Bin 4 (Nyquist) has expected phase 4*pi, measured phase 0, + // hence error 0 and unwrapped phase 4*pi. + + double phaseExpected1[] = { 999, 0, -M_PI, -M_PI/2, M_PI, 0, 999 }; + COMPARE_ARRAY(phase, phaseExpected1); + + double unwExpected1[] = { 999, 0, M_PI, 3*M_PI/2, 3*M_PI, 4*M_PI, 999 }; + COMPARE_ARRAY(unw, unwExpected1); + + pvoc.processTimeDomain(data + 16, mag + 1, phase + 1, unw + 1); + + double magExpected2[] = { 999, 0, 4, 4, 0, 0, 999 }; + COMPARE_ARRAY(mag, magExpected2); + + double phaseExpected2[] = { 999, 0, 0, -M_PI/2, 0, 0, 999 }; + COMPARE_ARRAY(phase, phaseExpected2); + + double unwExpected2[] = { 999, 0, 2*M_PI, 7*M_PI/2, 6*M_PI, 8*M_PI, 999 }; + COMPARE_ARRAY(unw, unwExpected2); +} + +BOOST_AUTO_TEST_SUITE_END() +