Mercurial > hg > qm-dsp
diff maths/pca/pca.c @ 241:a98dd8ec96f8
* Move dsp/maths to maths ; bring PCA and HMM across from Soundbite
author | Chris Cannam <c.cannam@qmul.ac.uk> |
---|---|
date | Wed, 09 Jan 2008 10:31:29 +0000 |
parents | |
children | e4a57215ddee |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/maths/pca/pca.c Wed Jan 09 10:31:29 2008 +0000 @@ -0,0 +1,356 @@ +/*********************************/ +/* Principal Components Analysis */ +/*********************************/ + +/*********************************************************************/ +/* Principal Components Analysis or the Karhunen-Loeve expansion is a + classical method for dimensionality reduction or exploratory data + analysis. One reference among many is: F. Murtagh and A. Heck, + Multivariate Data Analysis, Kluwer Academic, Dordrecht, 1987. + + Author: + F. Murtagh + Phone: + 49 89 32006298 (work) + + 49 89 965307 (home) + Earn/Bitnet: fionn@dgaeso51, fim@dgaipp1s, murtagh@stsci + Span: esomc1::fionn + Internet: murtagh@scivax.stsci.edu + + F. Murtagh, Munich, 6 June 1989 */ +/*********************************************************************/ + +#include <stdio.h> +#include <stdlib.h> +#include <math.h> + +#include "pca.h" + +#define SIGN(a, b) ( (b) < 0 ? -fabs(a) : fabs(a) ) + +/** Variance-covariance matrix: creation *****************************/ + +/* Create m * m covariance matrix from given n * m data matrix. */ +void covcol(double** data, int n, int m, double** symmat) +{ +double *mean; +int i, j, j1, j2; + +/* Allocate storage for mean vector */ + +mean = (double*) malloc(m*sizeof(double)); + +/* Determine mean of column vectors of input data matrix */ + +for (j = 0; j < m; j++) + { + mean[j] = 0.0; + for (i = 0; i < n; i++) + { + mean[j] += data[i][j]; + } + mean[j] /= (double)n; + } + +/* +printf("\nMeans of column vectors:\n"); +for (j = 0; j < m; j++) { + printf("%12.1f",mean[j]); } printf("\n"); + */ + +/* Center the column vectors. */ + +for (i = 0; i < n; i++) + { + for (j = 0; j < m; j++) + { + data[i][j] -= mean[j]; + } + } + +/* Calculate the m * m covariance matrix. */ +for (j1 = 0; j1 < m; j1++) + { + for (j2 = j1; j2 < m; j2++) + { + symmat[j1][j2] = 0.0; + for (i = 0; i < n; i++) + { + symmat[j1][j2] += data[i][j1] * data[i][j2]; + } + symmat[j2][j1] = symmat[j1][j2]; + } + } + +free(mean); + +return; + +} + +/** Error handler **************************************************/ + +void erhand(char* err_msg) +{ + fprintf(stderr,"Run-time error:\n"); + fprintf(stderr,"%s\n", err_msg); + fprintf(stderr,"Exiting to system.\n"); + exit(1); +} + + +/** Reduce a real, symmetric matrix to a symmetric, tridiag. matrix. */ + +/* Householder reduction of matrix a to tridiagonal form. +Algorithm: Martin et al., Num. Math. 11, 181-195, 1968. +Ref: Smith et al., Matrix Eigensystem Routines -- EISPACK Guide +Springer-Verlag, 1976, pp. 489-494. +W H Press et al., Numerical Recipes in C, Cambridge U P, +1988, pp. 373-374. */ +void tred2(double** a, int n, double* d, double* e) +{ + int l, k, j, i; + double scale, hh, h, g, f; + + for (i = n-1; i >= 1; i--) + { + l = i - 1; + h = scale = 0.0; + if (l > 0) + { + for (k = 0; k <= l; k++) + scale += fabs(a[i][k]); + if (scale == 0.0) + e[i] = a[i][l]; + else + { + for (k = 0; k <= l; k++) + { + a[i][k] /= scale; + h += a[i][k] * a[i][k]; + } + f = a[i][l]; + g = f>0 ? -sqrt(h) : sqrt(h); + e[i] = scale * g; + h -= f * g; + a[i][l] = f - g; + f = 0.0; + for (j = 0; j <= l; j++) + { + a[j][i] = a[i][j]/h; + g = 0.0; + for (k = 0; k <= j; k++) + g += a[j][k] * a[i][k]; + for (k = j+1; k <= l; k++) + g += a[k][j] * a[i][k]; + e[j] = g / h; + f += e[j] * a[i][j]; + } + hh = f / (h + h); + for (j = 0; j <= l; j++) + { + f = a[i][j]; + e[j] = g = e[j] - hh * f; + for (k = 0; k <= j; k++) + a[j][k] -= (f * e[k] + g * a[i][k]); + } + } + } + else + e[i] = a[i][l]; + d[i] = h; + } + d[0] = 0.0; + e[0] = 0.0; + for (i = 0; i < n; i++) + { + l = i - 1; + if (d[i]) + { + for (j = 0; j <= l; j++) + { + g = 0.0; + for (k = 0; k <= l; k++) + g += a[i][k] * a[k][j]; + for (k = 0; k <= l; k++) + a[k][j] -= g * a[k][i]; + } + } + d[i] = a[i][i]; + a[i][i] = 1.0; + for (j = 0; j <= l; j++) + a[j][i] = a[i][j] = 0.0; + } +} + +/** Tridiagonal QL algorithm -- Implicit **********************/ + +void tqli(double* d, double* e, int n, double** z) +{ + int m, l, iter, i, k; + double s, r, p, g, f, dd, c, b; + + for (i = 1; i < n; i++) + e[i-1] = e[i]; + e[n-1] = 0.0; + for (l = 0; l < n; l++) + { + iter = 0; + do + { + for (m = l; m < n-1; m++) + { + dd = fabs(d[m]) + fabs(d[m+1]); + if (fabs(e[m]) + dd == dd) break; + } + if (m != l) + { + if (iter++ == 30) erhand("No convergence in TLQI."); + g = (d[l+1] - d[l]) / (2.0 * e[l]); + r = sqrt((g * g) + 1.0); + g = d[m] - d[l] + e[l] / (g + SIGN(r, g)); + s = c = 1.0; + p = 0.0; + for (i = m-1; i >= l; i--) + { + f = s * e[i]; + b = c * e[i]; + if (fabs(f) >= fabs(g)) + { + c = g / f; + r = sqrt((c * c) + 1.0); + e[i+1] = f * r; + c *= (s = 1.0/r); + } + else + { + s = f / g; + r = sqrt((s * s) + 1.0); + e[i+1] = g * r; + s *= (c = 1.0/r); + } + g = d[i+1] - p; + r = (d[i] - g) * s + 2.0 * c * b; + p = s * r; + d[i+1] = g + p; + g = c * r - b; + for (k = 0; k < n; k++) + { + f = z[k][i+1]; + z[k][i+1] = s * z[k][i] + c * f; + z[k][i] = c * z[k][i] - s * f; + } + } + d[l] = d[l] - p; + e[l] = g; + e[m] = 0.0; + } + } while (m != l); + } +} + +/* In place projection onto basis vectors */ +void pca_project(double** data, int n, int m, int ncomponents) +{ + int i, j, k, k2; + double **symmat, **symmat2, *evals, *interm; + + //TODO: assert ncomponents < m + + symmat = (double**) malloc(m*sizeof(double*)); + for (i = 0; i < m; i++) + symmat[i] = (double*) malloc(m*sizeof(double)); + + covcol(data, n, m, symmat); + + /********************************************************************* + Eigen-reduction + **********************************************************************/ + + /* Allocate storage for dummy and new vectors. */ + evals = (double*) malloc(m*sizeof(double)); /* Storage alloc. for vector of eigenvalues */ + interm = (double*) malloc(m*sizeof(double)); /* Storage alloc. for 'intermediate' vector */ + //MALLOC_ARRAY(symmat2,m,m,double); + //for (i = 0; i < m; i++) { + // for (j = 0; j < m; j++) { + // symmat2[i][j] = symmat[i][j]; /* Needed below for col. projections */ + // } + //} + tred2(symmat, m, evals, interm); /* Triangular decomposition */ +tqli(evals, interm, m, symmat); /* Reduction of sym. trid. matrix */ +/* evals now contains the eigenvalues, +columns of symmat now contain the associated eigenvectors. */ + +/* + printf("\nEigenvalues:\n"); + for (j = m-1; j >= 0; j--) { + printf("%18.5f\n", evals[j]); } + printf("\n(Eigenvalues should be strictly positive; limited\n"); + printf("precision machine arithmetic may affect this.\n"); + printf("Eigenvalues are often expressed as cumulative\n"); + printf("percentages, representing the 'percentage variance\n"); + printf("explained' by the associated axis or principal component.)\n"); + + printf("\nEigenvectors:\n"); + printf("(First three; their definition in terms of original vbes.)\n"); + for (j = 0; j < m; j++) { + for (i = 1; i <= 3; i++) { + printf("%12.4f", symmat[j][m-i]); } + printf("\n"); } + */ + +/* Form projections of row-points on prin. components. */ +/* Store in 'data', overwriting original data. */ +for (i = 0; i < n; i++) { + for (j = 0; j < m; j++) { + interm[j] = data[i][j]; } /* data[i][j] will be overwritten */ + for (k = 0; k < ncomponents; k++) { + data[i][k] = 0.0; + for (k2 = 0; k2 < m; k2++) { + data[i][k] += interm[k2] * symmat[k2][m-k-1]; } + } +} + +/* +printf("\nProjections of row-points on first 3 prin. comps.:\n"); + for (i = 0; i < n; i++) { + for (j = 0; j < 3; j++) { + printf("%12.4f", data[i][j]); } + printf("\n"); } + */ + +/* Form projections of col.-points on first three prin. components. */ +/* Store in 'symmat2', overwriting what was stored in this. */ +//for (j = 0; j < m; j++) { +// for (k = 0; k < m; k++) { +// interm[k] = symmat2[j][k]; } /*symmat2[j][k] will be overwritten*/ +// for (i = 0; i < 3; i++) { +// symmat2[j][i] = 0.0; +// for (k2 = 0; k2 < m; k2++) { +// symmat2[j][i] += interm[k2] * symmat[k2][m-i-1]; } +// if (evals[m-i-1] > 0.0005) /* Guard against zero eigenvalue */ +// symmat2[j][i] /= sqrt(evals[m-i-1]); /* Rescale */ +// else +// symmat2[j][i] = 0.0; /* Standard kludge */ +// } +// } + +/* + printf("\nProjections of column-points on first 3 prin. comps.:\n"); + for (j = 0; j < m; j++) { + for (k = 0; k < 3; k++) { + printf("%12.4f", symmat2[j][k]); } + printf("\n"); } + */ + + +for (i = 0; i < m; i++) + free(symmat[i]); +free(symmat); +//FREE_ARRAY(symmat2,m); +free(evals); +free(interm); + +} + + +