diff maths/pca/pca.c @ 241:a98dd8ec96f8

* Move dsp/maths to maths ; bring PCA and HMM across from Soundbite
author Chris Cannam <c.cannam@qmul.ac.uk>
date Wed, 09 Jan 2008 10:31:29 +0000
parents
children e4a57215ddee
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/maths/pca/pca.c	Wed Jan 09 10:31:29 2008 +0000
@@ -0,0 +1,356 @@
+/*********************************/
+/* Principal Components Analysis */
+/*********************************/
+
+/*********************************************************************/
+/* Principal Components Analysis or the Karhunen-Loeve expansion is a
+   classical method for dimensionality reduction or exploratory data
+   analysis.  One reference among many is: F. Murtagh and A. Heck,
+   Multivariate Data Analysis, Kluwer Academic, Dordrecht, 1987.
+
+   Author:
+   F. Murtagh
+   Phone:        + 49 89 32006298 (work)
+                 + 49 89 965307 (home)
+   Earn/Bitnet:  fionn@dgaeso51,  fim@dgaipp1s,  murtagh@stsci
+   Span:         esomc1::fionn
+   Internet:     murtagh@scivax.stsci.edu
+   
+   F. Murtagh, Munich, 6 June 1989                                   */   
+/*********************************************************************/
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <math.h>
+
+#include "pca.h"
+
+#define SIGN(a, b) ( (b) < 0 ? -fabs(a) : fabs(a) )
+
+/**  Variance-covariance matrix: creation  *****************************/
+
+/* Create m * m covariance matrix from given n * m data matrix. */
+void covcol(double** data, int n, int m, double** symmat)
+{
+double *mean;
+int i, j, j1, j2;
+
+/* Allocate storage for mean vector */
+
+mean = (double*) malloc(m*sizeof(double));
+
+/* Determine mean of column vectors of input data matrix */
+
+for (j = 0; j < m; j++)
+    {
+    mean[j] = 0.0;
+    for (i = 0; i < n; i++)
+        {
+        mean[j] += data[i][j];
+        }
+    mean[j] /= (double)n;
+    }
+
+/*
+printf("\nMeans of column vectors:\n");
+for (j = 0; j < m; j++)  {
+    printf("%12.1f",mean[j]);  }   printf("\n");
+ */
+
+/* Center the column vectors. */
+
+for (i = 0; i < n; i++)
+    {
+    for (j = 0; j < m; j++)
+        {
+        data[i][j] -= mean[j];
+        }
+    }
+
+/* Calculate the m * m covariance matrix. */
+for (j1 = 0; j1 < m; j1++)
+    {
+    for (j2 = j1; j2 < m; j2++)
+        {
+        symmat[j1][j2] = 0.0;
+        for (i = 0; i < n; i++)
+            {
+            symmat[j1][j2] += data[i][j1] * data[i][j2];
+            }
+        symmat[j2][j1] = symmat[j1][j2];
+        }
+    }
+
+free(mean);
+
+return;
+
+}
+
+/**  Error handler  **************************************************/
+
+void erhand(char* err_msg)
+{
+    fprintf(stderr,"Run-time error:\n");
+    fprintf(stderr,"%s\n", err_msg);
+    fprintf(stderr,"Exiting to system.\n");
+    exit(1);
+}
+
+
+/**  Reduce a real, symmetric matrix to a symmetric, tridiag. matrix. */
+
+/* Householder reduction of matrix a to tridiagonal form.
+Algorithm: Martin et al., Num. Math. 11, 181-195, 1968.
+Ref: Smith et al., Matrix Eigensystem Routines -- EISPACK Guide
+Springer-Verlag, 1976, pp. 489-494.
+W H Press et al., Numerical Recipes in C, Cambridge U P,
+1988, pp. 373-374.  */
+void tred2(double** a, int n, double* d, double* e)
+{
+	int l, k, j, i;
+	double scale, hh, h, g, f;
+	
+	for (i = n-1; i >= 1; i--)
+    {
+		l = i - 1;
+		h = scale = 0.0;
+		if (l > 0)
+		{
+			for (k = 0; k <= l; k++)
+				scale += fabs(a[i][k]);
+			if (scale == 0.0)
+				e[i] = a[i][l];
+			else
+			{
+				for (k = 0; k <= l; k++)
+				{
+					a[i][k] /= scale;
+					h += a[i][k] * a[i][k];
+				}
+				f = a[i][l];
+				g = f>0 ? -sqrt(h) : sqrt(h);
+				e[i] = scale * g;
+				h -= f * g;
+				a[i][l] = f - g;
+				f = 0.0;
+				for (j = 0; j <= l; j++)
+				{
+					a[j][i] = a[i][j]/h;
+					g = 0.0;
+					for (k = 0; k <= j; k++)
+						g += a[j][k] * a[i][k];
+					for (k = j+1; k <= l; k++)
+						g += a[k][j] * a[i][k];
+					e[j] = g / h;
+					f += e[j] * a[i][j];
+				}
+				hh = f / (h + h);
+				for (j = 0; j <= l; j++)
+				{
+					f = a[i][j];
+					e[j] = g = e[j] - hh * f;
+					for (k = 0; k <= j; k++)
+						a[j][k] -= (f * e[k] + g * a[i][k]);
+				}
+			}
+		}
+		else
+			e[i] = a[i][l];
+		d[i] = h;
+    }
+	d[0] = 0.0;
+	e[0] = 0.0;
+	for (i = 0; i < n; i++)
+    {
+		l = i - 1;
+		if (d[i])
+		{
+			for (j = 0; j <= l; j++)
+			{
+				g = 0.0;
+				for (k = 0; k <= l; k++)
+					g += a[i][k] * a[k][j];
+				for (k = 0; k <= l; k++)
+					a[k][j] -= g * a[k][i];
+			}
+		}
+		d[i] = a[i][i];
+		a[i][i] = 1.0;
+		for (j = 0; j <= l; j++)
+			a[j][i] = a[i][j] = 0.0;
+    }
+}
+
+/**  Tridiagonal QL algorithm -- Implicit  **********************/
+
+void tqli(double* d, double* e, int n, double** z)
+{
+	int m, l, iter, i, k;
+	double s, r, p, g, f, dd, c, b;
+	
+	for (i = 1; i < n; i++)
+		e[i-1] = e[i];
+	e[n-1] = 0.0;
+	for (l = 0; l < n; l++)
+    {
+		iter = 0;
+		do
+		{
+			for (m = l; m < n-1; m++)
+			{
+				dd = fabs(d[m]) + fabs(d[m+1]);
+				if (fabs(e[m]) + dd == dd) break;
+			}
+			if (m != l)
+			{
+				if (iter++ == 30) erhand("No convergence in TLQI.");
+				g = (d[l+1] - d[l]) / (2.0 * e[l]);
+				r = sqrt((g * g) + 1.0);
+				g = d[m] - d[l] + e[l] / (g + SIGN(r, g));
+				s = c = 1.0;
+				p = 0.0;
+				for (i = m-1; i >= l; i--)
+				{
+					f = s * e[i];
+					b = c * e[i];
+					if (fabs(f) >= fabs(g))
+                    {
+						c = g / f;
+						r = sqrt((c * c) + 1.0);
+						e[i+1] = f * r;
+						c *= (s = 1.0/r);
+                    }
+					else
+                    {
+						s = f / g;
+						r = sqrt((s * s) + 1.0);
+						e[i+1] = g * r;
+						s *= (c = 1.0/r);
+                    }
+					g = d[i+1] - p;
+					r = (d[i] - g) * s + 2.0 * c * b;
+					p = s * r;
+					d[i+1] = g + p;
+					g = c * r - b;
+					for (k = 0; k < n; k++)
+					{
+						f = z[k][i+1];
+						z[k][i+1] = s * z[k][i] + c * f;
+						z[k][i] = c * z[k][i] - s * f;
+					}
+				}
+				d[l] = d[l] - p;
+				e[l] = g;
+				e[m] = 0.0;
+			}
+		}  while (m != l);
+	}
+}
+
+/* In place projection onto basis vectors */
+void pca_project(double** data, int n, int m, int ncomponents)
+{
+	int  i, j, k, k2;
+	double  **symmat, **symmat2, *evals, *interm;
+	
+	//TODO: assert ncomponents < m
+	
+	symmat = (double**) malloc(m*sizeof(double*));
+	for (i = 0; i < m; i++)
+		symmat[i] = (double*) malloc(m*sizeof(double));
+		
+	covcol(data, n, m, symmat);
+	
+	/*********************************************************************
+		Eigen-reduction
+		**********************************************************************/
+	
+    /* Allocate storage for dummy and new vectors. */
+    evals = (double*) malloc(m*sizeof(double));     /* Storage alloc. for vector of eigenvalues */
+    interm = (double*) malloc(m*sizeof(double));    /* Storage alloc. for 'intermediate' vector */
+    //MALLOC_ARRAY(symmat2,m,m,double);    
+	//for (i = 0; i < m; i++) {
+	//	for (j = 0; j < m; j++) {
+	//		symmat2[i][j] = symmat[i][j]; /* Needed below for col. projections */
+	//	}
+	//}
+    tred2(symmat, m, evals, interm);  /* Triangular decomposition */
+tqli(evals, interm, m, symmat);   /* Reduction of sym. trid. matrix */
+/* evals now contains the eigenvalues,
+columns of symmat now contain the associated eigenvectors. */	
+
+/*
+	printf("\nEigenvalues:\n");
+	for (j = m-1; j >= 0; j--) {
+		printf("%18.5f\n", evals[j]); }
+	printf("\n(Eigenvalues should be strictly positive; limited\n");
+	printf("precision machine arithmetic may affect this.\n");
+	printf("Eigenvalues are often expressed as cumulative\n");
+	printf("percentages, representing the 'percentage variance\n");
+	printf("explained' by the associated axis or principal component.)\n");
+	
+	printf("\nEigenvectors:\n");
+	printf("(First three; their definition in terms of original vbes.)\n");
+	for (j = 0; j < m; j++) {
+		for (i = 1; i <= 3; i++)  {
+			printf("%12.4f", symmat[j][m-i]);  }
+		printf("\n");  }
+ */
+
+/* Form projections of row-points on prin. components. */
+/* Store in 'data', overwriting original data. */
+for (i = 0; i < n; i++) {
+	for (j = 0; j < m; j++) {
+		interm[j] = data[i][j]; }   /* data[i][j] will be overwritten */
+        for (k = 0; k < ncomponents; k++) {
+			data[i][k] = 0.0;
+			for (k2 = 0; k2 < m; k2++) {
+				data[i][k] += interm[k2] * symmat[k2][m-k-1]; }
+        }
+}
+
+/*	
+printf("\nProjections of row-points on first 3 prin. comps.:\n");
+ for (i = 0; i < n; i++) {
+	 for (j = 0; j < 3; j++)  {
+		 printf("%12.4f", data[i][j]);  }
+	 printf("\n");  }
+ */
+
+/* Form projections of col.-points on first three prin. components. */
+/* Store in 'symmat2', overwriting what was stored in this. */
+//for (j = 0; j < m; j++) {
+//	 for (k = 0; k < m; k++) {
+//		 interm[k] = symmat2[j][k]; }  /*symmat2[j][k] will be overwritten*/
+//  for (i = 0; i < 3; i++) {
+//	symmat2[j][i] = 0.0;
+//		for (k2 = 0; k2 < m; k2++) {
+//			symmat2[j][i] += interm[k2] * symmat[k2][m-i-1]; }
+//		if (evals[m-i-1] > 0.0005)   /* Guard against zero eigenvalue */
+//			symmat2[j][i] /= sqrt(evals[m-i-1]);   /* Rescale */
+//		else
+//			symmat2[j][i] = 0.0;    /* Standard kludge */
+//    }
+// }
+
+/*
+ printf("\nProjections of column-points on first 3 prin. comps.:\n");
+ for (j = 0; j < m; j++) {
+	 for (k = 0; k < 3; k++)  {
+		 printf("%12.4f", symmat2[j][k]);  }
+	 printf("\n");  }
+	*/
+
+
+for (i = 0; i < m; i++)
+	free(symmat[i]);
+free(symmat);
+//FREE_ARRAY(symmat2,m);
+free(evals);
+free(interm);
+
+}
+
+
+