Mercurial > hg > qm-dsp
diff dsp/tempotracking/DownBeat.cpp @ 54:5bec06ecc88a
* First cut at Matthew's downbeat estimator -- untested so far
author | cannam |
---|---|
date | Tue, 10 Feb 2009 12:52:43 +0000 |
parents | |
children | 7fe29d8a7eaf |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/dsp/tempotracking/DownBeat.cpp Tue Feb 10 12:52:43 2009 +0000 @@ -0,0 +1,241 @@ +/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ + +/* + QM DSP Library + + Centre for Digital Music, Queen Mary, University of London. + This file copyright 2008-2009 Matthew Davies and QMUL. + All rights reserved. +*/ + +#include "DownBeat.h" + +#include "maths/MathAliases.h" +#include "maths/MathUtilities.h" +#include "dsp/transforms/FFT.h" + +#include <iostream> +#include <cstdlib> + +DownBeat::DownBeat(float originalSampleRate, + size_t decimationFactor, + size_t dfIncrement) : + m_rate(originalSampleRate), + m_factor(decimationFactor), + m_increment(dfIncrement), + m_decimator1(0), + m_decimator2(0), + m_buffer(0), + m_bufsiz(0), + m_buffill(0), + m_beatframesize(0), + m_beatframe(0) +{ + // beat frame size is next power of two up from 1.3 seconds at the + // downsampled rate (happens to produce 4096 for 44100 or 48000 at + // 16x decimation, which is our expected normal situation) + int bfs = int((m_rate / decimationFactor) * 1.3); + m_beatframesize = 1; + while (bfs) { bfs >>= 1; m_beatframesize <<= 1; } + std::cerr << "rate = " << m_rate << ", bfs = " << m_beatframesize << std::endl; + m_beatframe = new double[m_beatframesize]; + m_fftRealOut = new double[m_beatframesize]; + m_fftImagOut = new double[m_beatframesize]; +} + +DownBeat::~DownBeat() +{ + delete m_decimator1; + delete m_decimator2; + if (m_buffer) free(m_buffer); + delete[] m_decbuf; + delete[] m_beatframe; + delete[] m_fftRealOut; + delete[] m_fftImagOut; +} + +void +DownBeat::makeDecimators() +{ + if (m_factor < 2) return; + int highest = Decimator::getHighestSupportedFactor(); + if (m_factor <= highest) { + m_decimator1 = new Decimator(m_increment, m_factor); + return; + } + m_decimator1 = new Decimator(m_increment, highest); + m_decimator2 = new Decimator(m_increment / highest, m_factor / highest); + m_decbuf = new double[m_factor / highest]; +} + +void +DownBeat::pushAudioBlock(const double *audio) +{ + if (m_buffill + (m_increment / m_factor) > m_bufsiz) { + if (m_bufsiz == 0) m_bufsiz = m_increment * 16; + else m_bufsiz = m_bufsiz * 2; + if (!m_buffer) { + m_buffer = (double *)malloc(m_bufsiz * sizeof(double)); + } else { + std::cerr << "DownBeat::pushAudioBlock: realloc m_buffer to " << m_bufsiz << std::endl; + m_buffer = (double *)realloc(m_buffer, m_bufsiz * sizeof(double)); + } + } + if (!m_decimator1) makeDecimators(); + if (m_decimator2) { + m_decimator1->process(audio, m_decbuf); + m_decimator2->process(m_decbuf, m_buffer + m_buffill); + } else { + m_decimator1->process(audio, m_buffer + m_buffill); + } + m_buffill += m_increment / m_factor; +} + +const double * +DownBeat::getBufferedAudio(size_t &length) const +{ + length = m_buffill; + return m_buffer; +} + +void +DownBeat::findDownBeats(const double *audio, + size_t audioLength, + const d_vec_t &beats, + i_vec_t &downbeats) +{ + // FIND DOWNBEATS BY PARTITIONING THE INPUT AUDIO FILE INTO BEAT SEGMENTS + // WHERE THE AUDIO FRAMES ARE DOWNSAMPLED BY A FACTOR OF 16 (fs ~= 2700Hz) + // THEN TAKING THE JENSEN-SHANNON DIVERGENCE BETWEEN BEAT SYNCHRONOUS SPECTRAL FRAMES + + // IMPLEMENTATION (MOSTLY) FOLLOWS: + // DAVIES AND PLUMBLEY "A SPECTRAL DIFFERENCE APPROACH TO EXTRACTING DOWNBEATS IN MUSICAL AUDIO" + // EUSIPCO 2006, FLORENCE, ITALY + + d_vec_t newspec(m_beatframesize / 2); // magnitude spectrum of current beat + d_vec_t oldspec(m_beatframesize / 2); // magnitude spectrum of previous beat + d_vec_t specdiff; + + if (audioLength == 0) return; + + for (size_t i = 0; i + 1 < beats.size(); ++i) { + + // Copy the extents of the current beat from downsampled array + // into beat frame buffer + + size_t beatstart = (beats[i] * m_increment) / m_factor; + size_t beatend = (beats[i] * m_increment) / m_factor; + if (beatend >= audioLength) beatend = audioLength - 1; + if (beatend < beatstart) beatend = beatstart; + size_t beatlen = beatend - beatstart; + + // Also apply a Hanning window to the beat frame buffer, sized + // to the beat extents rather than the frame size. (Because + // the size varies, it's easier to do this by hand than use + // our Window abstraction.) + + for (size_t j = 0; j < beatlen; ++j) { + double mul = 0.5 * (1.0 - cos(TWO_PI * (double(j) / double(beatlen)))); + m_beatframe[j] = audio[beatstart + j] * mul; + } + + for (size_t j = beatlen; j < m_beatframesize; ++j) { + m_beatframe[j] = 0.0; + } + + // Now FFT beat frame + + FFT::process(m_beatframesize, false, + m_beatframe, 0, m_fftRealOut, m_fftImagOut); + + // Calculate magnitudes + + for (size_t j = 0; j < m_beatframesize/2; ++j) { + newspec[j] = sqrt(m_fftRealOut[j] * m_fftRealOut[j] + + m_fftImagOut[j] * m_fftImagOut[j]); + } + + // Preserve peaks by applying adaptive threshold + + MathUtilities::adaptiveThreshold(newspec); + + // Calculate JS divergence between new and old spectral frames + + specdiff.push_back(measureSpecDiff(oldspec, newspec)); + + // Copy newspec across to old + + for (size_t j = 0; j < m_beatframesize/2; ++j) { + oldspec[j] = newspec[j]; + } + } + + // We now have all spectral difference measures in specdiff + + uint timesig = 4; // SHOULD REPLACE THIS WITH A FIND_METER FUNCTION - OR USER PARAMETER + d_vec_t dbcand(timesig); // downbeat candidates + + // look for beat transition which leads to greatest spectral change + for (int beat = 0; beat < timesig; ++beat) { + for (int example = beat; example < specdiff.size(); ++example) { + dbcand[beat] += (specdiff[example]) / timesig; + } + } + + // first downbeat is beat at index of maximum value of dbcand + int dbind = MathUtilities::getMax(dbcand); + + // remaining downbeats are at timesig intervals from the first + for (int i = dbind; i < beats.size(); i += timesig) { + downbeats.push_back(i); + } +} + +double +DownBeat::measureSpecDiff(d_vec_t oldspec, d_vec_t newspec) +{ + // JENSEN-SHANNON DIVERGENCE BETWEEN SPECTRAL FRAMES + + uint SPECSIZE = 512; // ONLY LOOK AT FIRST 512 SAMPLES OF SPECTRUM. + if (SPECSIZE > oldspec.size()/4) { + SPECSIZE = oldspec.size()/4; + } + double SD = 0.; + double sd1 = 0.; + + double sumnew = 0.; + double sumold = 0.; + + for (uint i = 0;i < SPECSIZE;i++) + { + newspec[i] +=EPS; + oldspec[i] +=EPS; + + sumnew+=newspec[i]; + sumold+=oldspec[i]; + } + + for (uint i = 0;i < SPECSIZE;i++) + { + newspec[i] /= (sumnew); + oldspec[i] /= (sumold); + + // IF ANY SPECTRAL VALUES ARE 0 (SHOULDN'T BE ANY!) SET THEM TO 1 + if (newspec[i] == 0) + { + newspec[i] = 1.; + } + + if (oldspec[i] == 0) + { + oldspec[i] = 1.; + } + + // JENSEN-SHANNON CALCULATION + sd1 = 0.5*oldspec[i] + 0.5*newspec[i]; + SD = SD + (-sd1*log(sd1)) + (0.5*(oldspec[i]*log(oldspec[i]))) + (0.5*(newspec[i]*log(newspec[i]))); + } + + return SD; +} +