Mercurial > hg > qm-dsp
comparison dsp/chromagram/ConstantQ.cpp @ 73:dcb555b90924
* Key detector: when returning key strengths, use the peak value of the
three underlying chromagram correlations (from 36-bin chromagram)
corresponding to each key, instead of the mean.
Rationale: This is the same method as used when returning the key value,
and it's nice to have the same results in both returned value and plot.
The peak performed better than the sum with a simple test set of triads,
so it seems reasonable to change the plot to match the key output rather
than the other way around.
* FFT: kiss_fftr returns only the non-conjugate bins, synthesise the rest
rather than leaving them (perhaps dangerously) undefined. Fixes an
uninitialised data error in chromagram that could cause garbage results
from key detector.
* Constant Q: remove precalculated values again, I reckon they're not
proving such a good tradeoff.
author | cannam |
---|---|
date | Fri, 05 Jun 2009 15:12:39 +0000 |
parents | 6cb2b3cd5356 |
children | e5907ae6de17 |
comparison
equal
deleted
inserted
replaced
72:d0b35b1e3a98 | 73:dcb555b90924 |
---|---|
9 | 9 |
10 #include "ConstantQ.h" | 10 #include "ConstantQ.h" |
11 #include "dsp/transforms/FFT.h" | 11 #include "dsp/transforms/FFT.h" |
12 | 12 |
13 #include <iostream> | 13 #include <iostream> |
14 | |
15 #ifdef NOT_DEFINED | |
16 // see note in CQprecalc | |
14 | 17 |
15 #include "CQprecalc.cpp" | 18 #include "CQprecalc.cpp" |
16 | 19 |
17 static bool push_precalculated(int uk, int fftlength, | 20 static bool push_precalculated(int uk, int fftlength, |
18 std::vector<unsigned> &is, | 21 std::vector<unsigned> &is, |
36 push_84_65536(is, js, real, imag); | 39 push_84_65536(is, js, real, imag); |
37 return true; | 40 return true; |
38 } | 41 } |
39 return false; | 42 return false; |
40 } | 43 } |
44 #endif | |
41 | 45 |
42 //--------------------------------------------------------------------------- | 46 //--------------------------------------------------------------------------- |
43 // nextpow2 returns the smallest integer n such that 2^n >= x. | 47 // nextpow2 returns the smallest integer n such that 2^n >= x. |
44 static double nextpow2(double x) { | 48 static double nextpow2(double x) { |
45 double y = ceil(log(x)/log(2.0)); | 49 double y = ceil(log(x)/log(2.0)); |
68 { | 72 { |
69 // std::cerr << "ConstantQ: initialising sparse kernel, uK = " << m_uK << ", FFTLength = " << m_FFTLength << "..."; | 73 // std::cerr << "ConstantQ: initialising sparse kernel, uK = " << m_uK << ", FFTLength = " << m_FFTLength << "..."; |
70 | 74 |
71 SparseKernel *sk = new SparseKernel(); | 75 SparseKernel *sk = new SparseKernel(); |
72 | 76 |
77 #ifdef NOT_DEFINED | |
73 if (push_precalculated(m_uK, m_FFTLength, | 78 if (push_precalculated(m_uK, m_FFTLength, |
74 sk->is, sk->js, sk->real, sk->imag)) { | 79 sk->is, sk->js, sk->real, sk->imag)) { |
80 // std::cerr << "using precalculated kernel" << std::endl; | |
75 m_sparseKernel = sk; | 81 m_sparseKernel = sk; |
76 return; | 82 return; |
77 } | 83 } |
78 | 84 #endif |
85 | |
79 //generates spectral kernel matrix (upside down?) | 86 //generates spectral kernel matrix (upside down?) |
80 // initialise temporal kernel with zeros, twice length to deal w. complex numbers | 87 // initialise temporal kernel with zeros, twice length to deal w. complex numbers |
81 | 88 |
82 double* hammingWindowRe = new double [ m_FFTLength ]; | 89 double* hammingWindowRe = new double [ m_FFTLength ]; |
83 double* hammingWindowIm = new double [ m_FFTLength ]; | 90 double* hammingWindowIm = new double [ m_FFTLength ]; |