comparison ext/clapack/src/dtrti2.c @ 427:905e45637745

Add the CLAPACK and CBLAS/F2C-BLAS files we use
author Chris Cannam <c.cannam@qmul.ac.uk>
date Fri, 30 Sep 2016 15:51:22 +0100
parents
children
comparison
equal deleted inserted replaced
426:a23b9f8b4a59 427:905e45637745
1 /* dtrti2.f -- translated by f2c (version 20061008).
2 You must link the resulting object file with libf2c:
3 on Microsoft Windows system, link with libf2c.lib;
4 on Linux or Unix systems, link with .../path/to/libf2c.a -lm
5 or, if you install libf2c.a in a standard place, with -lf2c -lm
6 -- in that order, at the end of the command line, as in
7 cc *.o -lf2c -lm
8 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
9
10 http://www.netlib.org/f2c/libf2c.zip
11 */
12
13 #include "f2c.h"
14 #include "blaswrap.h"
15
16 /* Table of constant values */
17
18 static integer c__1 = 1;
19
20 /* Subroutine */ int dtrti2_(char *uplo, char *diag, integer *n, doublereal *
21 a, integer *lda, integer *info)
22 {
23 /* System generated locals */
24 integer a_dim1, a_offset, i__1, i__2;
25
26 /* Local variables */
27 integer j;
28 doublereal ajj;
29 extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
30 integer *);
31 extern logical lsame_(char *, char *);
32 logical upper;
33 extern /* Subroutine */ int dtrmv_(char *, char *, char *, integer *,
34 doublereal *, integer *, doublereal *, integer *), xerbla_(char *, integer *);
35 logical nounit;
36
37
38 /* -- LAPACK routine (version 3.2) -- */
39 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
40 /* November 2006 */
41
42 /* .. Scalar Arguments .. */
43 /* .. */
44 /* .. Array Arguments .. */
45 /* .. */
46
47 /* Purpose */
48 /* ======= */
49
50 /* DTRTI2 computes the inverse of a real upper or lower triangular */
51 /* matrix. */
52
53 /* This is the Level 2 BLAS version of the algorithm. */
54
55 /* Arguments */
56 /* ========= */
57
58 /* UPLO (input) CHARACTER*1 */
59 /* Specifies whether the matrix A is upper or lower triangular. */
60 /* = 'U': Upper triangular */
61 /* = 'L': Lower triangular */
62
63 /* DIAG (input) CHARACTER*1 */
64 /* Specifies whether or not the matrix A is unit triangular. */
65 /* = 'N': Non-unit triangular */
66 /* = 'U': Unit triangular */
67
68 /* N (input) INTEGER */
69 /* The order of the matrix A. N >= 0. */
70
71 /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
72 /* On entry, the triangular matrix A. If UPLO = 'U', the */
73 /* leading n by n upper triangular part of the array A contains */
74 /* the upper triangular matrix, and the strictly lower */
75 /* triangular part of A is not referenced. If UPLO = 'L', the */
76 /* leading n by n lower triangular part of the array A contains */
77 /* the lower triangular matrix, and the strictly upper */
78 /* triangular part of A is not referenced. If DIAG = 'U', the */
79 /* diagonal elements of A are also not referenced and are */
80 /* assumed to be 1. */
81
82 /* On exit, the (triangular) inverse of the original matrix, in */
83 /* the same storage format. */
84
85 /* LDA (input) INTEGER */
86 /* The leading dimension of the array A. LDA >= max(1,N). */
87
88 /* INFO (output) INTEGER */
89 /* = 0: successful exit */
90 /* < 0: if INFO = -k, the k-th argument had an illegal value */
91
92 /* ===================================================================== */
93
94 /* .. Parameters .. */
95 /* .. */
96 /* .. Local Scalars .. */
97 /* .. */
98 /* .. External Functions .. */
99 /* .. */
100 /* .. External Subroutines .. */
101 /* .. */
102 /* .. Intrinsic Functions .. */
103 /* .. */
104 /* .. Executable Statements .. */
105
106 /* Test the input parameters. */
107
108 /* Parameter adjustments */
109 a_dim1 = *lda;
110 a_offset = 1 + a_dim1;
111 a -= a_offset;
112
113 /* Function Body */
114 *info = 0;
115 upper = lsame_(uplo, "U");
116 nounit = lsame_(diag, "N");
117 if (! upper && ! lsame_(uplo, "L")) {
118 *info = -1;
119 } else if (! nounit && ! lsame_(diag, "U")) {
120 *info = -2;
121 } else if (*n < 0) {
122 *info = -3;
123 } else if (*lda < max(1,*n)) {
124 *info = -5;
125 }
126 if (*info != 0) {
127 i__1 = -(*info);
128 xerbla_("DTRTI2", &i__1);
129 return 0;
130 }
131
132 if (upper) {
133
134 /* Compute inverse of upper triangular matrix. */
135
136 i__1 = *n;
137 for (j = 1; j <= i__1; ++j) {
138 if (nounit) {
139 a[j + j * a_dim1] = 1. / a[j + j * a_dim1];
140 ajj = -a[j + j * a_dim1];
141 } else {
142 ajj = -1.;
143 }
144
145 /* Compute elements 1:j-1 of j-th column. */
146
147 i__2 = j - 1;
148 dtrmv_("Upper", "No transpose", diag, &i__2, &a[a_offset], lda, &
149 a[j * a_dim1 + 1], &c__1);
150 i__2 = j - 1;
151 dscal_(&i__2, &ajj, &a[j * a_dim1 + 1], &c__1);
152 /* L10: */
153 }
154 } else {
155
156 /* Compute inverse of lower triangular matrix. */
157
158 for (j = *n; j >= 1; --j) {
159 if (nounit) {
160 a[j + j * a_dim1] = 1. / a[j + j * a_dim1];
161 ajj = -a[j + j * a_dim1];
162 } else {
163 ajj = -1.;
164 }
165 if (j < *n) {
166
167 /* Compute elements j+1:n of j-th column. */
168
169 i__1 = *n - j;
170 dtrmv_("Lower", "No transpose", diag, &i__1, &a[j + 1 + (j +
171 1) * a_dim1], lda, &a[j + 1 + j * a_dim1], &c__1);
172 i__1 = *n - j;
173 dscal_(&i__1, &ajj, &a[j + 1 + j * a_dim1], &c__1);
174 }
175 /* L20: */
176 }
177 }
178
179 return 0;
180
181 /* End of DTRTI2 */
182
183 } /* dtrti2_ */