comparison dsp/transforms/FFT.cpp @ 225:49844bc8a895

* Queen Mary C++ DSP library
author Chris Cannam <c.cannam@qmul.ac.uk>
date Wed, 05 Apr 2006 17:35:59 +0000
parents
children a251fb0de594
comparison
equal deleted inserted replaced
-1:000000000000 225:49844bc8a895
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
2
3 /*
4 QM DSP Library
5
6 Centre for Digital Music, Queen Mary, University of London.
7 This file is based on Don Cross's public domain FFT implementation.
8 */
9
10 #include "FFT.h"
11 #include <cmath>
12
13 //////////////////////////////////////////////////////////////////////
14 // Construction/Destruction
15 //////////////////////////////////////////////////////////////////////
16
17 FFT::FFT()
18 {
19
20 }
21
22 FFT::~FFT()
23 {
24
25 }
26
27 void FFT::process(unsigned int p_nSamples, bool p_bInverseTransform, double *p_lpRealIn, double *p_lpImagIn, double *p_lpRealOut, double *p_lpImagOut)
28 {
29
30 if(!p_lpRealIn || !p_lpRealOut || !p_lpImagOut) return;
31
32
33 unsigned int NumBits;
34 unsigned int i, j, k, n;
35 unsigned int BlockSize, BlockEnd;
36
37 double angle_numerator = 2.0 * M_PI;
38 double tr, ti;
39
40 if( !isPowerOfTwo(p_nSamples) )
41 {
42 return;
43 }
44
45 if( p_bInverseTransform ) angle_numerator = -angle_numerator;
46
47 NumBits = numberOfBitsNeeded ( p_nSamples );
48
49
50 for( i=0; i < p_nSamples; i++ )
51 {
52 j = reverseBits ( i, NumBits );
53 p_lpRealOut[j] = p_lpRealIn[i];
54 p_lpImagOut[j] = (p_lpImagIn == 0) ? 0.0 : p_lpImagIn[i];
55 }
56
57
58 BlockEnd = 1;
59 for( BlockSize = 2; BlockSize <= p_nSamples; BlockSize <<= 1 )
60 {
61 double delta_angle = angle_numerator / (double)BlockSize;
62 double sm2 = -sin ( -2 * delta_angle );
63 double sm1 = -sin ( -delta_angle );
64 double cm2 = cos ( -2 * delta_angle );
65 double cm1 = cos ( -delta_angle );
66 double w = 2 * cm1;
67 double ar[3], ai[3];
68
69 for( i=0; i < p_nSamples; i += BlockSize )
70 {
71
72 ar[2] = cm2;
73 ar[1] = cm1;
74
75 ai[2] = sm2;
76 ai[1] = sm1;
77
78 for ( j=i, n=0; n < BlockEnd; j++, n++ )
79 {
80
81 ar[0] = w*ar[1] - ar[2];
82 ar[2] = ar[1];
83 ar[1] = ar[0];
84
85 ai[0] = w*ai[1] - ai[2];
86 ai[2] = ai[1];
87 ai[1] = ai[0];
88
89 k = j + BlockEnd;
90 tr = ar[0]*p_lpRealOut[k] - ai[0]*p_lpImagOut[k];
91 ti = ar[0]*p_lpImagOut[k] + ai[0]*p_lpRealOut[k];
92
93 p_lpRealOut[k] = p_lpRealOut[j] - tr;
94 p_lpImagOut[k] = p_lpImagOut[j] - ti;
95
96 p_lpRealOut[j] += tr;
97 p_lpImagOut[j] += ti;
98
99 }
100 }
101
102 BlockEnd = BlockSize;
103
104 }
105
106
107 if( p_bInverseTransform )
108 {
109 double denom = (double)p_nSamples;
110
111 for ( i=0; i < p_nSamples; i++ )
112 {
113 p_lpRealOut[i] /= denom;
114 p_lpImagOut[i] /= denom;
115 }
116 }
117 }
118
119 bool FFT::isPowerOfTwo(unsigned int p_nX)
120 {
121 if( p_nX < 2 ) return false;
122
123 if( p_nX & (p_nX-1) ) return false;
124
125 return true;
126 }
127
128 unsigned int FFT::numberOfBitsNeeded(unsigned int p_nSamples)
129 {
130 int i;
131
132 if( p_nSamples < 2 )
133 {
134 return 0;
135 }
136
137 for ( i=0; ; i++ )
138 {
139 if( p_nSamples & (1 << i) ) return i;
140 }
141 }
142
143 unsigned int FFT::reverseBits(unsigned int p_nIndex, unsigned int p_nBits)
144 {
145 unsigned int i, rev;
146
147 for(i=rev=0; i < p_nBits; i++)
148 {
149 rev = (rev << 1) | (p_nIndex & 1);
150 p_nIndex >>= 1;
151 }
152
153 return rev;
154 }