comparison dsp/maths/Histogram.h @ 225:49844bc8a895

* Queen Mary C++ DSP library
author Chris Cannam <c.cannam@qmul.ac.uk>
date Wed, 05 Apr 2006 17:35:59 +0000
parents
children 14839f9a616e
comparison
equal deleted inserted replaced
-1:000000000000 225:49844bc8a895
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
2
3 // Histogram.h: interface for the THistogram class.
4 //
5 //////////////////////////////////////////////////////////////////////
6
7
8 #ifndef HISTOGRAM_H
9 #define HISTOGRAM_H
10
11
12 #include <valarray>
13
14 /*! \brief A histogram class
15
16 This class computes the histogram of a vector.
17
18 \par Template parameters
19
20 - T type of input data (can be any: float, double, int, UINT, etc...)
21 - TOut type of output data: float or double. (default is double)
22
23 \par Moments:
24
25 The moments (average, standard deviation, skewness, etc.) are computed using
26 the algorithm of the Numerical recipies (see Numerical recipies in C, Chapter 14.1, pg 613).
27
28 \par Example:
29
30 This example shows the typical use of the class:
31 \code
32 // a vector containing the data
33 vector<float> data;
34 // Creating histogram using float data and with 101 containers,
35 THistogram<float> histo(101);
36 // computing the histogram
37 histo.compute(data);
38 \endcode
39
40 Once this is done, you can get a vector with the histogram or the normalized histogram (such that it's area is 1):
41 \code
42 // getting normalized histogram
43 vector<float> v=histo.getNormalizedHistogram();
44 \endcode
45
46 \par Reference
47
48 Equally spaced acsissa function integration (used in #GetArea): Numerical Recipies in C, Chapter 4.1, pg 130.
49
50 \author Jonathan de Halleux, dehalleux@auto.ucl.ac.be, 2002
51 */
52
53 template<class T, class TOut = double>
54 class THistogram
55 {
56 public:
57 //! \name Constructors
58 //@{
59 /*! Default constructor
60 \param counters the number of histogram containers (default value is 10)
61 */
62 THistogram(unsigned int counters = 10);
63 virtual ~THistogram() { clear();};
64 //@}
65
66 //! \name Histogram computation, update
67 //@{
68 /*! Computes histogram of vector v
69 \param v vector to compute histogram
70 \param computeMinMax set to true if min/max of v have to be used to get the histogram limits
71
72 This function computes the histogram of v and stores it internally.
73 \sa Update, GeTHistogram
74 */
75 void compute( const std::vector<T>& v, bool computeMinMax = true);
76 //! Update histogram with the vector v
77 void update( const std::vector<T>& v);
78 //! Update histogram with t
79 void update( const T& t);
80 //@}
81
82 //! \name Resetting functions
83 //@{
84 //! Resize the histogram. Warning this function clear the histogram.
85 void resize( unsigned int counters );
86 //! Clears the histogram
87 void clear() { m_counters.clear();};
88 //@}
89
90 //! \name Setters
91 //@{
92 /*! This function sets the minimum of the histogram spectrum.
93 The spectrum is not recomputed, use it with care
94 */
95 void setMinSpectrum( const T& min ) { m_min = min; computeStep();};
96 /*! This function sets the minimum of the histogram spectrum.
97 The spectrum is not recomputed, use it with care
98 */
99 void setMaxSpectrum( const T& max ) { m_max = max; computeStep();};
100 //@}
101 //! \name Getters
102 //@{
103 //! return minimum of histogram spectrum
104 const T& getMinSpectrum() const { return m_min;};
105 //! return maximum of histogram spectrum
106 const T& getMaxSpectrum() const { return m_max;};
107 //! return step size of histogram containers
108 TOut getStep() const { return m_step;};
109 //! return number of points in histogram
110 unsigned int getSum() const;
111 /*! \brief returns area under the histogram
112
113 The Simpson rule is used to integrate the histogram.
114 */
115 TOut getArea() const;
116
117 /*! \brief Computes the moments of the histogram
118
119 \param data dataset
120 \param ave mean
121 \f[ \bar x = \frac{1}{N} \sum_{j=1}^N x_j\f]
122 \param adev mean absolute deviation
123 \f[ adev(X) = \frac{1}{N} \sum_{j=1}^N | x_j - \bar x |\f]
124 \param var average deviation:
125 \f[ \mbox{Var}(X) = \frac{1}{N-1} \sum_{j=1}^N (x_j - \bar x)^2\f]
126 \param sdev standard deviation:
127 \f[ \sigma(X) = \sqrt{var(\bar x) }\f]
128 \param skew skewness
129 \f[ \mbox{Skew}(X) = \frac{1}{N}\sum_{j=1}^N \left[ \frac{x_j - \bar x}{\sigma}\right]^3\f]
130 \param kurt kurtosis
131 \f[ \mbox{Kurt}(X) = \left\{ \frac{1}{N}\sum_{j=1}^N \left[ \frac{x_j - \bar x}{\sigma}\right]^4 \right\} - 3\f]
132
133 */
134 static void getMoments(const std::vector<T>& data, TOut& ave, TOut& adev, TOut& sdev, TOut& var, TOut& skew, TOut& kurt);
135
136 //! return number of containers
137 unsigned int getSize() const { return m_counters.size();};
138 //! returns i-th counter
139 unsigned int operator [] (unsigned int i) const { ASSERT( i < m_counters.size() ); return m_counters[i];};
140 //! return the computed histogram
141 const std::vector<unsigned int>& geTHistogram() const { return m_counters;};
142 //! return the computed histogram, in TOuts
143 std::vector<TOut> geTHistogramD() const;
144 /*! return the normalized computed histogram
145
146 \return the histogram such that the area is equal to 1
147 */
148 std::vector<TOut> getNormalizedHistogram() const;
149 //! returns left containers position
150 std::vector<TOut> getLeftContainers() const;
151 //! returns center containers position
152 std::vector<TOut> getCenterContainers() const;
153 //@}
154 protected:
155 //! Computes the step
156 void computeStep() { m_step = (TOut)(((TOut)(m_max-m_min)) / (m_counters.size()-1));};
157 //! Data accumulators
158 std::vector<unsigned int> m_counters;
159 //! minimum of dataset
160 T m_min;
161 //! maximum of dataset
162 T m_max;
163 //! width of container
164 TOut m_step;
165 };
166
167 template<class T, class TOut>
168 THistogram<T,TOut>::THistogram(unsigned int counters)
169 : m_counters(counters,0), m_min(0), m_max(0), m_step(0)
170 {
171
172 }
173
174 template<class T, class TOut>
175 void THistogram<T,TOut>::resize( unsigned int counters )
176 {
177 clear();
178
179 m_counters.resize(counters,0);
180
181 computeStep();
182 }
183
184 template<class T, class TOut>
185 void THistogram<T,TOut>::compute( const std::vector<T>& v, bool computeMinMax)
186 {
187 using namespace std;
188 unsigned int i;
189 int index;
190
191 if (m_counters.empty())
192 return;
193
194 if (computeMinMax)
195 {
196 m_max = m_min = v[0];
197 for (i=1;i<v.size();i++)
198 {
199 m_max = std::max( m_max, v[i]);
200 m_min = std::min( m_min, v[i]);
201 }
202 }
203
204 computeStep();
205
206 for (i = 0;i < v.size() ; i++)
207 {
208 index=(int) floor( ((TOut)(v[i]-m_min))/m_step ) ;
209
210 if (index >= m_counters.size() || index < 0)
211 return;
212
213 m_counters[index]++;
214 }
215 }
216
217 template<class T, class TOut>
218 void THistogram<T,TOut>::update( const std::vector<T>& v)
219 {
220 if (m_counters.empty())
221 return;
222
223 computeStep();
224
225 TOut size = m_counters.size();
226
227 int index;
228 for (unsigned int i = 0;i < size ; i++)
229 {
230 index = (int)floor(((TOut)(v[i]-m_min))/m_step);
231
232 if (index >= m_counters.size() || index < 0)
233 return;
234
235 m_counters[index]++;
236 }
237 }
238
239 template<class T, class TOut>
240 void THistogram<T,TOut>::update( const T& t)
241 {
242 int index=(int) floor( ((TOut)(t-m_min))/m_step ) ;
243
244 if (index >= m_counters.size() || index < 0)
245 return;
246
247 m_counters[index]++;
248 };
249
250 template<class T, class TOut>
251 std::vector<TOut> THistogram<T,TOut>::geTHistogramD() const
252 {
253 std::vector<TOut> v(m_counters.size());
254 for (unsigned int i = 0;i<m_counters.size(); i++)
255 v[i]=(TOut)m_counters[i];
256
257 return v;
258 }
259
260 template <class T, class TOut>
261 std::vector<TOut> THistogram<T,TOut>::getLeftContainers() const
262 {
263 std::vector<TOut> x( m_counters.size());
264
265 for (unsigned int i = 0;i<m_counters.size(); i++)
266 x[i]= m_min + i*m_step;
267
268 return x;
269 }
270
271 template <class T, class TOut>
272 std::vector<TOut> THistogram<T,TOut>::getCenterContainers() const
273 {
274 std::vector<TOut> x( m_counters.size());
275
276 for (unsigned int i = 0;i<m_counters.size(); i++)
277 x[i]= m_min + (i+0.5)*m_step;
278
279 return x;
280 }
281
282 template <class T, class TOut>
283 unsigned int THistogram<T,TOut>::getSum() const
284 {
285 unsigned int sum = 0;
286 for (unsigned int i = 0;i<m_counters.size(); i++)
287 sum+=m_counters[i];
288
289 return sum;
290 }
291
292 template <class T, class TOut>
293 TOut THistogram<T,TOut>::getArea() const
294 {
295 const size_t n=m_counters.size();
296 TOut area=0;
297
298 if (n>6)
299 {
300 area=3.0/8.0*(m_counters[0]+m_counters[n-1])
301 +7.0/6.0*(m_counters[1]+m_counters[n-2])
302 +23.0/24.0*(m_counters[2]+m_counters[n-3]);
303 for (unsigned int i=3;i<n-3;i++)
304 {
305 area+=m_counters[i];
306 }
307 }
308 else if (n>4)
309 {
310 area=5.0/12.0*(m_counters[0]+m_counters[n-1])
311 +13.0/12.0*(m_counters[1]+m_counters[n-2]);
312 for (unsigned int i=2;i<n-2;i++)
313 {
314 area+=m_counters[i];
315 }
316 }
317 else if (n>1)
318 {
319 area=1/2.0*(m_counters[0]+m_counters[n-1]);
320 for (unsigned int i=1;i<n-1;i++)
321 {
322 area+=m_counters[i];
323 }
324 }
325 else
326 area=0;
327
328 return area*m_step;
329 }
330
331 template <class T, class TOut>
332 std::vector<TOut> THistogram<T,TOut>::getNormalizedHistogram() const
333 {
334 std::vector<TOut> normCounters( m_counters.size());
335 TOut area = (TOut)getArea();
336
337 for (unsigned int i = 0;i<m_counters.size(); i++)
338 {
339 normCounters[i]= (TOut)m_counters[i]/area;
340 }
341
342 return normCounters;
343 };
344
345 template <class T, class TOut>
346 void THistogram<T,TOut>::getMoments(const std::vector<T>& data, TOut& ave, TOut& adev, TOut& sdev, TOut& var, TOut& skew, TOut& kurt)
347 {
348 int j;
349 double ep=0.0,s,p;
350 const size_t n = data.size();
351
352 if (n <= 1)
353 // nrerror("n must be at least 2 in moment");
354 return;
355
356 s=0.0; // First pass to get the mean.
357 for (j=0;j<n;j++)
358 s += data[j];
359
360 ave=s/(n);
361 adev=var=skew=kurt=0.0;
362 /* Second pass to get the first (absolute), second,
363 third, and fourth moments of the
364 deviation from the mean. */
365
366 for (j=0;j<n;j++)
367 {
368 adev += fabs(s=data[j]-(ave));
369 ep += s;
370 var += (p=s*s);
371 skew += (p *= s);
372 kurt += (p *= s);
373 }
374
375
376 adev /= n;
377 var=(var-ep*ep/n)/(n-1); // Corrected two-pass formula.
378 sdev=sqrt(var); // Put the pieces together according to the conventional definitions.
379 if (var)
380 {
381 skew /= (n*(var)*(sdev));
382 kurt=(kurt)/(n*(var)*(var))-3.0;
383 }
384 else
385 //nrerror("No skew/kurtosis when variance = 0 (in moment)");
386 return;
387 }
388
389 #endif
390