comparison dsp/rateconversion/Resampler.cpp @ 362:3953f3ef1b62

First cut at resampler (not quite correct)
author Chris Cannam <c.cannam@qmul.ac.uk>
date Fri, 11 Oct 2013 18:00:51 +0100
parents
children e89d489af128
comparison
equal deleted inserted replaced
361:3a6f9b27fb36 362:3953f3ef1b62
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
2
3 #include "Resampler.h"
4
5 #include "qm-dsp/maths/MathUtilities.h"
6 #include "qm-dsp/base/KaiserWindow.h"
7 #include "qm-dsp/base/SincWindow.h"
8
9 #include <iostream>
10
11 Resampler::Resampler(int sourceRate, int targetRate) :
12 m_sourceRate(sourceRate),
13 m_targetRate(targetRate)
14 {
15 initialise();
16 }
17
18 Resampler::~Resampler()
19 {
20 delete[] m_buffer;
21 delete[] m_phaseData;
22 }
23
24 void
25 Resampler::initialise()
26 {
27 int higher = std::max(m_sourceRate, m_targetRate);
28 int lower = std::min(m_sourceRate, m_targetRate);
29
30 m_gcd = MathUtilities::gcd(lower, higher);
31
32 int peakToPole = higher / m_gcd;
33
34 KaiserWindow::Parameters params =
35 KaiserWindow::parametersForBandwidth(100, 0.02, peakToPole);
36
37 params.length =
38 (params.length % 2 == 0 ? params.length + 1 : params.length);
39
40 m_filterLength = params.length;
41
42 KaiserWindow kw(params);
43 SincWindow sw(m_filterLength, peakToPole * 2);
44
45 double *filter = new double[m_filterLength];
46 for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0;
47 sw.cut(filter);
48 kw.cut(filter);
49
50 int inputSpacing = m_targetRate / m_gcd;
51 int outputSpacing = m_sourceRate / m_gcd;
52
53 m_latency = int((m_filterLength / 2) / outputSpacing);
54
55 m_bufferLength = 0;
56
57 m_phaseData = new Phase[inputSpacing];
58
59 for (int phase = 0; phase < inputSpacing; ++phase) {
60
61 Phase p;
62
63 p.nextPhase = phase - outputSpacing;
64 while (p.nextPhase < 0) p.nextPhase += inputSpacing;
65 p.nextPhase %= inputSpacing;
66
67 p.drop = int(ceil(std::max(0, outputSpacing - phase) / inputSpacing));
68 p.take = int((outputSpacing +
69 ((m_filterLength - 1 - phase) % inputSpacing))
70 / outputSpacing);
71
72 int filtZipLength = int(ceil((m_filterLength - phase) / inputSpacing));
73 if (filtZipLength > m_bufferLength) {
74 m_bufferLength = filtZipLength;
75 }
76
77 for (int i = 0; i < filtZipLength; ++i) {
78 p.filter.push_back(filter[i * inputSpacing + phase]);
79 }
80
81 m_phaseData[phase] = p;
82 }
83
84 delete[] filter;
85
86 // The May implementation of this uses a pull model -- we ask the
87 // resampler for a certain number of output samples, and it asks
88 // its source stream for as many as it needs to calculate
89 // those. This means (among other things) that the source stream
90 // can be asked for enough samples up-front to fill the buffer
91 // before the first output sample is generated.
92 //
93 // In this implementation we're using a push model in which a
94 // certain number of source samples is provided and we're asked
95 // for as many output samples as that makes available. But we
96 // can't return any samples from the beginning until half the
97 // filter length has been provided as input. This means we must
98 // either return a very variable number of samples (none at all
99 // until the filter fills, then half the filter length at once) or
100 // else have a lengthy declared latency on the output. We do the
101 // latter. (What do other implementations do?)
102
103 m_phase = m_filterLength % inputSpacing;
104 m_buffer = new double[m_bufferLength];
105 for (int i = 0; i < m_bufferLength; ++i) m_buffer[i] = 0.0;
106 }
107
108 double
109 Resampler::reconstructOne(const double **srcptr)
110 {
111 Phase &pd = m_phaseData[m_phase];
112 double *filt = pd.filter.data();
113 int n = pd.filter.size();
114 double v = 0.0;
115 for (int i = 0; i < n; ++i) {
116 v += m_buffer[i] * filt[i];
117 }
118 for (int i = pd.drop; i < n; ++i) {
119 m_buffer[i - pd.drop] = m_buffer[i];
120 }
121 for (int i = 0; i < pd.take; ++i) {
122 m_buffer[n - pd.drop + i] = **srcptr;
123 ++ *srcptr;
124 }
125 m_phase = pd.nextPhase;
126 return v;
127 }
128
129 int
130 Resampler::process(const double *src, double *dst, int n)
131 {
132 int m = 0;
133 const double *srcptr = src;
134
135 while (n > m_phaseData[m_phase].take) {
136 std::cerr << "n = " << n << ", m = " << m << ", take = " << m_phaseData[m_phase].take << std::endl;
137 n -= m_phaseData[m_phase].take;
138 dst[m] = reconstructOne(&srcptr);
139 std::cerr << "n -> " << n << std::endl;
140 ++m;
141 }
142
143 //!!! save any excess
144
145 return m;
146 }
147