Mercurial > hg > qm-dsp
comparison ext/cblas/src/dtrsm.c @ 430:335af74a25b6
Merge from branch clapack-included
author | Chris Cannam <c.cannam@qmul.ac.uk> |
---|---|
date | Fri, 30 Sep 2016 16:24:24 +0100 |
parents | 905e45637745 |
children |
comparison
equal
deleted
inserted
replaced
426:a23b9f8b4a59 | 430:335af74a25b6 |
---|---|
1 /* dtrsm.f -- translated by f2c (version 20061008). | |
2 You must link the resulting object file with libf2c: | |
3 on Microsoft Windows system, link with libf2c.lib; | |
4 on Linux or Unix systems, link with .../path/to/libf2c.a -lm | |
5 or, if you install libf2c.a in a standard place, with -lf2c -lm | |
6 -- in that order, at the end of the command line, as in | |
7 cc *.o -lf2c -lm | |
8 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., | |
9 | |
10 http://www.netlib.org/f2c/libf2c.zip | |
11 */ | |
12 | |
13 #include "f2c.h" | |
14 #include "blaswrap.h" | |
15 | |
16 /* Subroutine */ int dtrsm_(char *side, char *uplo, char *transa, char *diag, | |
17 integer *m, integer *n, doublereal *alpha, doublereal *a, integer * | |
18 lda, doublereal *b, integer *ldb) | |
19 { | |
20 /* System generated locals */ | |
21 integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3; | |
22 | |
23 /* Local variables */ | |
24 integer i__, j, k, info; | |
25 doublereal temp; | |
26 logical lside; | |
27 extern logical lsame_(char *, char *); | |
28 integer nrowa; | |
29 logical upper; | |
30 extern /* Subroutine */ int xerbla_(char *, integer *); | |
31 logical nounit; | |
32 | |
33 /* .. Scalar Arguments .. */ | |
34 /* .. */ | |
35 /* .. Array Arguments .. */ | |
36 /* .. */ | |
37 | |
38 /* Purpose */ | |
39 /* ======= */ | |
40 | |
41 /* DTRSM solves one of the matrix equations */ | |
42 | |
43 /* op( A )*X = alpha*B, or X*op( A ) = alpha*B, */ | |
44 | |
45 /* where alpha is a scalar, X and B are m by n matrices, A is a unit, or */ | |
46 /* non-unit, upper or lower triangular matrix and op( A ) is one of */ | |
47 | |
48 /* op( A ) = A or op( A ) = A'. */ | |
49 | |
50 /* The matrix X is overwritten on B. */ | |
51 | |
52 /* Arguments */ | |
53 /* ========== */ | |
54 | |
55 /* SIDE - CHARACTER*1. */ | |
56 /* On entry, SIDE specifies whether op( A ) appears on the left */ | |
57 /* or right of X as follows: */ | |
58 | |
59 /* SIDE = 'L' or 'l' op( A )*X = alpha*B. */ | |
60 | |
61 /* SIDE = 'R' or 'r' X*op( A ) = alpha*B. */ | |
62 | |
63 /* Unchanged on exit. */ | |
64 | |
65 /* UPLO - CHARACTER*1. */ | |
66 /* On entry, UPLO specifies whether the matrix A is an upper or */ | |
67 /* lower triangular matrix as follows: */ | |
68 | |
69 /* UPLO = 'U' or 'u' A is an upper triangular matrix. */ | |
70 | |
71 /* UPLO = 'L' or 'l' A is a lower triangular matrix. */ | |
72 | |
73 /* Unchanged on exit. */ | |
74 | |
75 /* TRANSA - CHARACTER*1. */ | |
76 /* On entry, TRANSA specifies the form of op( A ) to be used in */ | |
77 /* the matrix multiplication as follows: */ | |
78 | |
79 /* TRANSA = 'N' or 'n' op( A ) = A. */ | |
80 | |
81 /* TRANSA = 'T' or 't' op( A ) = A'. */ | |
82 | |
83 /* TRANSA = 'C' or 'c' op( A ) = A'. */ | |
84 | |
85 /* Unchanged on exit. */ | |
86 | |
87 /* DIAG - CHARACTER*1. */ | |
88 /* On entry, DIAG specifies whether or not A is unit triangular */ | |
89 /* as follows: */ | |
90 | |
91 /* DIAG = 'U' or 'u' A is assumed to be unit triangular. */ | |
92 | |
93 /* DIAG = 'N' or 'n' A is not assumed to be unit */ | |
94 /* triangular. */ | |
95 | |
96 /* Unchanged on exit. */ | |
97 | |
98 /* M - INTEGER. */ | |
99 /* On entry, M specifies the number of rows of B. M must be at */ | |
100 /* least zero. */ | |
101 /* Unchanged on exit. */ | |
102 | |
103 /* N - INTEGER. */ | |
104 /* On entry, N specifies the number of columns of B. N must be */ | |
105 /* at least zero. */ | |
106 /* Unchanged on exit. */ | |
107 | |
108 /* ALPHA - DOUBLE PRECISION. */ | |
109 /* On entry, ALPHA specifies the scalar alpha. When alpha is */ | |
110 /* zero then A is not referenced and B need not be set before */ | |
111 /* entry. */ | |
112 /* Unchanged on exit. */ | |
113 | |
114 /* A - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m */ | |
115 /* when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. */ | |
116 /* Before entry with UPLO = 'U' or 'u', the leading k by k */ | |
117 /* upper triangular part of the array A must contain the upper */ | |
118 /* triangular matrix and the strictly lower triangular part of */ | |
119 /* A is not referenced. */ | |
120 /* Before entry with UPLO = 'L' or 'l', the leading k by k */ | |
121 /* lower triangular part of the array A must contain the lower */ | |
122 /* triangular matrix and the strictly upper triangular part of */ | |
123 /* A is not referenced. */ | |
124 /* Note that when DIAG = 'U' or 'u', the diagonal elements of */ | |
125 /* A are not referenced either, but are assumed to be unity. */ | |
126 /* Unchanged on exit. */ | |
127 | |
128 /* LDA - INTEGER. */ | |
129 /* On entry, LDA specifies the first dimension of A as declared */ | |
130 /* in the calling (sub) program. When SIDE = 'L' or 'l' then */ | |
131 /* LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' */ | |
132 /* then LDA must be at least max( 1, n ). */ | |
133 /* Unchanged on exit. */ | |
134 | |
135 /* B - DOUBLE PRECISION array of DIMENSION ( LDB, n ). */ | |
136 /* Before entry, the leading m by n part of the array B must */ | |
137 /* contain the right-hand side matrix B, and on exit is */ | |
138 /* overwritten by the solution matrix X. */ | |
139 | |
140 /* LDB - INTEGER. */ | |
141 /* On entry, LDB specifies the first dimension of B as declared */ | |
142 /* in the calling (sub) program. LDB must be at least */ | |
143 /* max( 1, m ). */ | |
144 /* Unchanged on exit. */ | |
145 | |
146 | |
147 /* Level 3 Blas routine. */ | |
148 | |
149 | |
150 /* -- Written on 8-February-1989. */ | |
151 /* Jack Dongarra, Argonne National Laboratory. */ | |
152 /* Iain Duff, AERE Harwell. */ | |
153 /* Jeremy Du Croz, Numerical Algorithms Group Ltd. */ | |
154 /* Sven Hammarling, Numerical Algorithms Group Ltd. */ | |
155 | |
156 | |
157 /* .. External Functions .. */ | |
158 /* .. */ | |
159 /* .. External Subroutines .. */ | |
160 /* .. */ | |
161 /* .. Intrinsic Functions .. */ | |
162 /* .. */ | |
163 /* .. Local Scalars .. */ | |
164 /* .. */ | |
165 /* .. Parameters .. */ | |
166 /* .. */ | |
167 | |
168 /* Test the input parameters. */ | |
169 | |
170 /* Parameter adjustments */ | |
171 a_dim1 = *lda; | |
172 a_offset = 1 + a_dim1; | |
173 a -= a_offset; | |
174 b_dim1 = *ldb; | |
175 b_offset = 1 + b_dim1; | |
176 b -= b_offset; | |
177 | |
178 /* Function Body */ | |
179 lside = lsame_(side, "L"); | |
180 if (lside) { | |
181 nrowa = *m; | |
182 } else { | |
183 nrowa = *n; | |
184 } | |
185 nounit = lsame_(diag, "N"); | |
186 upper = lsame_(uplo, "U"); | |
187 | |
188 info = 0; | |
189 if (! lside && ! lsame_(side, "R")) { | |
190 info = 1; | |
191 } else if (! upper && ! lsame_(uplo, "L")) { | |
192 info = 2; | |
193 } else if (! lsame_(transa, "N") && ! lsame_(transa, | |
194 "T") && ! lsame_(transa, "C")) { | |
195 info = 3; | |
196 } else if (! lsame_(diag, "U") && ! lsame_(diag, | |
197 "N")) { | |
198 info = 4; | |
199 } else if (*m < 0) { | |
200 info = 5; | |
201 } else if (*n < 0) { | |
202 info = 6; | |
203 } else if (*lda < max(1,nrowa)) { | |
204 info = 9; | |
205 } else if (*ldb < max(1,*m)) { | |
206 info = 11; | |
207 } | |
208 if (info != 0) { | |
209 xerbla_("DTRSM ", &info); | |
210 return 0; | |
211 } | |
212 | |
213 /* Quick return if possible. */ | |
214 | |
215 if (*m == 0 || *n == 0) { | |
216 return 0; | |
217 } | |
218 | |
219 /* And when alpha.eq.zero. */ | |
220 | |
221 if (*alpha == 0.) { | |
222 i__1 = *n; | |
223 for (j = 1; j <= i__1; ++j) { | |
224 i__2 = *m; | |
225 for (i__ = 1; i__ <= i__2; ++i__) { | |
226 b[i__ + j * b_dim1] = 0.; | |
227 /* L10: */ | |
228 } | |
229 /* L20: */ | |
230 } | |
231 return 0; | |
232 } | |
233 | |
234 /* Start the operations. */ | |
235 | |
236 if (lside) { | |
237 if (lsame_(transa, "N")) { | |
238 | |
239 /* Form B := alpha*inv( A )*B. */ | |
240 | |
241 if (upper) { | |
242 i__1 = *n; | |
243 for (j = 1; j <= i__1; ++j) { | |
244 if (*alpha != 1.) { | |
245 i__2 = *m; | |
246 for (i__ = 1; i__ <= i__2; ++i__) { | |
247 b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1] | |
248 ; | |
249 /* L30: */ | |
250 } | |
251 } | |
252 for (k = *m; k >= 1; --k) { | |
253 if (b[k + j * b_dim1] != 0.) { | |
254 if (nounit) { | |
255 b[k + j * b_dim1] /= a[k + k * a_dim1]; | |
256 } | |
257 i__2 = k - 1; | |
258 for (i__ = 1; i__ <= i__2; ++i__) { | |
259 b[i__ + j * b_dim1] -= b[k + j * b_dim1] * a[ | |
260 i__ + k * a_dim1]; | |
261 /* L40: */ | |
262 } | |
263 } | |
264 /* L50: */ | |
265 } | |
266 /* L60: */ | |
267 } | |
268 } else { | |
269 i__1 = *n; | |
270 for (j = 1; j <= i__1; ++j) { | |
271 if (*alpha != 1.) { | |
272 i__2 = *m; | |
273 for (i__ = 1; i__ <= i__2; ++i__) { | |
274 b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1] | |
275 ; | |
276 /* L70: */ | |
277 } | |
278 } | |
279 i__2 = *m; | |
280 for (k = 1; k <= i__2; ++k) { | |
281 if (b[k + j * b_dim1] != 0.) { | |
282 if (nounit) { | |
283 b[k + j * b_dim1] /= a[k + k * a_dim1]; | |
284 } | |
285 i__3 = *m; | |
286 for (i__ = k + 1; i__ <= i__3; ++i__) { | |
287 b[i__ + j * b_dim1] -= b[k + j * b_dim1] * a[ | |
288 i__ + k * a_dim1]; | |
289 /* L80: */ | |
290 } | |
291 } | |
292 /* L90: */ | |
293 } | |
294 /* L100: */ | |
295 } | |
296 } | |
297 } else { | |
298 | |
299 /* Form B := alpha*inv( A' )*B. */ | |
300 | |
301 if (upper) { | |
302 i__1 = *n; | |
303 for (j = 1; j <= i__1; ++j) { | |
304 i__2 = *m; | |
305 for (i__ = 1; i__ <= i__2; ++i__) { | |
306 temp = *alpha * b[i__ + j * b_dim1]; | |
307 i__3 = i__ - 1; | |
308 for (k = 1; k <= i__3; ++k) { | |
309 temp -= a[k + i__ * a_dim1] * b[k + j * b_dim1]; | |
310 /* L110: */ | |
311 } | |
312 if (nounit) { | |
313 temp /= a[i__ + i__ * a_dim1]; | |
314 } | |
315 b[i__ + j * b_dim1] = temp; | |
316 /* L120: */ | |
317 } | |
318 /* L130: */ | |
319 } | |
320 } else { | |
321 i__1 = *n; | |
322 for (j = 1; j <= i__1; ++j) { | |
323 for (i__ = *m; i__ >= 1; --i__) { | |
324 temp = *alpha * b[i__ + j * b_dim1]; | |
325 i__2 = *m; | |
326 for (k = i__ + 1; k <= i__2; ++k) { | |
327 temp -= a[k + i__ * a_dim1] * b[k + j * b_dim1]; | |
328 /* L140: */ | |
329 } | |
330 if (nounit) { | |
331 temp /= a[i__ + i__ * a_dim1]; | |
332 } | |
333 b[i__ + j * b_dim1] = temp; | |
334 /* L150: */ | |
335 } | |
336 /* L160: */ | |
337 } | |
338 } | |
339 } | |
340 } else { | |
341 if (lsame_(transa, "N")) { | |
342 | |
343 /* Form B := alpha*B*inv( A ). */ | |
344 | |
345 if (upper) { | |
346 i__1 = *n; | |
347 for (j = 1; j <= i__1; ++j) { | |
348 if (*alpha != 1.) { | |
349 i__2 = *m; | |
350 for (i__ = 1; i__ <= i__2; ++i__) { | |
351 b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1] | |
352 ; | |
353 /* L170: */ | |
354 } | |
355 } | |
356 i__2 = j - 1; | |
357 for (k = 1; k <= i__2; ++k) { | |
358 if (a[k + j * a_dim1] != 0.) { | |
359 i__3 = *m; | |
360 for (i__ = 1; i__ <= i__3; ++i__) { | |
361 b[i__ + j * b_dim1] -= a[k + j * a_dim1] * b[ | |
362 i__ + k * b_dim1]; | |
363 /* L180: */ | |
364 } | |
365 } | |
366 /* L190: */ | |
367 } | |
368 if (nounit) { | |
369 temp = 1. / a[j + j * a_dim1]; | |
370 i__2 = *m; | |
371 for (i__ = 1; i__ <= i__2; ++i__) { | |
372 b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1]; | |
373 /* L200: */ | |
374 } | |
375 } | |
376 /* L210: */ | |
377 } | |
378 } else { | |
379 for (j = *n; j >= 1; --j) { | |
380 if (*alpha != 1.) { | |
381 i__1 = *m; | |
382 for (i__ = 1; i__ <= i__1; ++i__) { | |
383 b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1] | |
384 ; | |
385 /* L220: */ | |
386 } | |
387 } | |
388 i__1 = *n; | |
389 for (k = j + 1; k <= i__1; ++k) { | |
390 if (a[k + j * a_dim1] != 0.) { | |
391 i__2 = *m; | |
392 for (i__ = 1; i__ <= i__2; ++i__) { | |
393 b[i__ + j * b_dim1] -= a[k + j * a_dim1] * b[ | |
394 i__ + k * b_dim1]; | |
395 /* L230: */ | |
396 } | |
397 } | |
398 /* L240: */ | |
399 } | |
400 if (nounit) { | |
401 temp = 1. / a[j + j * a_dim1]; | |
402 i__1 = *m; | |
403 for (i__ = 1; i__ <= i__1; ++i__) { | |
404 b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1]; | |
405 /* L250: */ | |
406 } | |
407 } | |
408 /* L260: */ | |
409 } | |
410 } | |
411 } else { | |
412 | |
413 /* Form B := alpha*B*inv( A' ). */ | |
414 | |
415 if (upper) { | |
416 for (k = *n; k >= 1; --k) { | |
417 if (nounit) { | |
418 temp = 1. / a[k + k * a_dim1]; | |
419 i__1 = *m; | |
420 for (i__ = 1; i__ <= i__1; ++i__) { | |
421 b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1]; | |
422 /* L270: */ | |
423 } | |
424 } | |
425 i__1 = k - 1; | |
426 for (j = 1; j <= i__1; ++j) { | |
427 if (a[j + k * a_dim1] != 0.) { | |
428 temp = a[j + k * a_dim1]; | |
429 i__2 = *m; | |
430 for (i__ = 1; i__ <= i__2; ++i__) { | |
431 b[i__ + j * b_dim1] -= temp * b[i__ + k * | |
432 b_dim1]; | |
433 /* L280: */ | |
434 } | |
435 } | |
436 /* L290: */ | |
437 } | |
438 if (*alpha != 1.) { | |
439 i__1 = *m; | |
440 for (i__ = 1; i__ <= i__1; ++i__) { | |
441 b[i__ + k * b_dim1] = *alpha * b[i__ + k * b_dim1] | |
442 ; | |
443 /* L300: */ | |
444 } | |
445 } | |
446 /* L310: */ | |
447 } | |
448 } else { | |
449 i__1 = *n; | |
450 for (k = 1; k <= i__1; ++k) { | |
451 if (nounit) { | |
452 temp = 1. / a[k + k * a_dim1]; | |
453 i__2 = *m; | |
454 for (i__ = 1; i__ <= i__2; ++i__) { | |
455 b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1]; | |
456 /* L320: */ | |
457 } | |
458 } | |
459 i__2 = *n; | |
460 for (j = k + 1; j <= i__2; ++j) { | |
461 if (a[j + k * a_dim1] != 0.) { | |
462 temp = a[j + k * a_dim1]; | |
463 i__3 = *m; | |
464 for (i__ = 1; i__ <= i__3; ++i__) { | |
465 b[i__ + j * b_dim1] -= temp * b[i__ + k * | |
466 b_dim1]; | |
467 /* L330: */ | |
468 } | |
469 } | |
470 /* L340: */ | |
471 } | |
472 if (*alpha != 1.) { | |
473 i__2 = *m; | |
474 for (i__ = 1; i__ <= i__2; ++i__) { | |
475 b[i__ + k * b_dim1] = *alpha * b[i__ + k * b_dim1] | |
476 ; | |
477 /* L350: */ | |
478 } | |
479 } | |
480 /* L360: */ | |
481 } | |
482 } | |
483 } | |
484 } | |
485 | |
486 return 0; | |
487 | |
488 /* End of DTRSM . */ | |
489 | |
490 } /* dtrsm_ */ |