Mercurial > hg > qm-dsp
comparison ext/cblas/src/dtrmv.c @ 430:335af74a25b6
Merge from branch clapack-included
author | Chris Cannam <c.cannam@qmul.ac.uk> |
---|---|
date | Fri, 30 Sep 2016 16:24:24 +0100 |
parents | 905e45637745 |
children |
comparison
equal
deleted
inserted
replaced
426:a23b9f8b4a59 | 430:335af74a25b6 |
---|---|
1 /* dtrmv.f -- translated by f2c (version 20061008). | |
2 You must link the resulting object file with libf2c: | |
3 on Microsoft Windows system, link with libf2c.lib; | |
4 on Linux or Unix systems, link with .../path/to/libf2c.a -lm | |
5 or, if you install libf2c.a in a standard place, with -lf2c -lm | |
6 -- in that order, at the end of the command line, as in | |
7 cc *.o -lf2c -lm | |
8 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., | |
9 | |
10 http://www.netlib.org/f2c/libf2c.zip | |
11 */ | |
12 | |
13 #include "f2c.h" | |
14 #include "blaswrap.h" | |
15 | |
16 /* Subroutine */ int dtrmv_(char *uplo, char *trans, char *diag, integer *n, | |
17 doublereal *a, integer *lda, doublereal *x, integer *incx) | |
18 { | |
19 /* System generated locals */ | |
20 integer a_dim1, a_offset, i__1, i__2; | |
21 | |
22 /* Local variables */ | |
23 integer i__, j, ix, jx, kx, info; | |
24 doublereal temp; | |
25 extern logical lsame_(char *, char *); | |
26 extern /* Subroutine */ int xerbla_(char *, integer *); | |
27 logical nounit; | |
28 | |
29 /* .. Scalar Arguments .. */ | |
30 /* .. */ | |
31 /* .. Array Arguments .. */ | |
32 /* .. */ | |
33 | |
34 /* Purpose */ | |
35 /* ======= */ | |
36 | |
37 /* DTRMV performs one of the matrix-vector operations */ | |
38 | |
39 /* x := A*x, or x := A'*x, */ | |
40 | |
41 /* where x is an n element vector and A is an n by n unit, or non-unit, */ | |
42 /* upper or lower triangular matrix. */ | |
43 | |
44 /* Arguments */ | |
45 /* ========== */ | |
46 | |
47 /* UPLO - CHARACTER*1. */ | |
48 /* On entry, UPLO specifies whether the matrix is an upper or */ | |
49 /* lower triangular matrix as follows: */ | |
50 | |
51 /* UPLO = 'U' or 'u' A is an upper triangular matrix. */ | |
52 | |
53 /* UPLO = 'L' or 'l' A is a lower triangular matrix. */ | |
54 | |
55 /* Unchanged on exit. */ | |
56 | |
57 /* TRANS - CHARACTER*1. */ | |
58 /* On entry, TRANS specifies the operation to be performed as */ | |
59 /* follows: */ | |
60 | |
61 /* TRANS = 'N' or 'n' x := A*x. */ | |
62 | |
63 /* TRANS = 'T' or 't' x := A'*x. */ | |
64 | |
65 /* TRANS = 'C' or 'c' x := A'*x. */ | |
66 | |
67 /* Unchanged on exit. */ | |
68 | |
69 /* DIAG - CHARACTER*1. */ | |
70 /* On entry, DIAG specifies whether or not A is unit */ | |
71 /* triangular as follows: */ | |
72 | |
73 /* DIAG = 'U' or 'u' A is assumed to be unit triangular. */ | |
74 | |
75 /* DIAG = 'N' or 'n' A is not assumed to be unit */ | |
76 /* triangular. */ | |
77 | |
78 /* Unchanged on exit. */ | |
79 | |
80 /* N - INTEGER. */ | |
81 /* On entry, N specifies the order of the matrix A. */ | |
82 /* N must be at least zero. */ | |
83 /* Unchanged on exit. */ | |
84 | |
85 /* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). */ | |
86 /* Before entry with UPLO = 'U' or 'u', the leading n by n */ | |
87 /* upper triangular part of the array A must contain the upper */ | |
88 /* triangular matrix and the strictly lower triangular part of */ | |
89 /* A is not referenced. */ | |
90 /* Before entry with UPLO = 'L' or 'l', the leading n by n */ | |
91 /* lower triangular part of the array A must contain the lower */ | |
92 /* triangular matrix and the strictly upper triangular part of */ | |
93 /* A is not referenced. */ | |
94 /* Note that when DIAG = 'U' or 'u', the diagonal elements of */ | |
95 /* A are not referenced either, but are assumed to be unity. */ | |
96 /* Unchanged on exit. */ | |
97 | |
98 /* LDA - INTEGER. */ | |
99 /* On entry, LDA specifies the first dimension of A as declared */ | |
100 /* in the calling (sub) program. LDA must be at least */ | |
101 /* max( 1, n ). */ | |
102 /* Unchanged on exit. */ | |
103 | |
104 /* X - DOUBLE PRECISION array of dimension at least */ | |
105 /* ( 1 + ( n - 1 )*abs( INCX ) ). */ | |
106 /* Before entry, the incremented array X must contain the n */ | |
107 /* element vector x. On exit, X is overwritten with the */ | |
108 /* tranformed vector x. */ | |
109 | |
110 /* INCX - INTEGER. */ | |
111 /* On entry, INCX specifies the increment for the elements of */ | |
112 /* X. INCX must not be zero. */ | |
113 /* Unchanged on exit. */ | |
114 | |
115 | |
116 /* Level 2 Blas routine. */ | |
117 | |
118 /* -- Written on 22-October-1986. */ | |
119 /* Jack Dongarra, Argonne National Lab. */ | |
120 /* Jeremy Du Croz, Nag Central Office. */ | |
121 /* Sven Hammarling, Nag Central Office. */ | |
122 /* Richard Hanson, Sandia National Labs. */ | |
123 | |
124 | |
125 /* .. Parameters .. */ | |
126 /* .. */ | |
127 /* .. Local Scalars .. */ | |
128 /* .. */ | |
129 /* .. External Functions .. */ | |
130 /* .. */ | |
131 /* .. External Subroutines .. */ | |
132 /* .. */ | |
133 /* .. Intrinsic Functions .. */ | |
134 /* .. */ | |
135 | |
136 /* Test the input parameters. */ | |
137 | |
138 /* Parameter adjustments */ | |
139 a_dim1 = *lda; | |
140 a_offset = 1 + a_dim1; | |
141 a -= a_offset; | |
142 --x; | |
143 | |
144 /* Function Body */ | |
145 info = 0; | |
146 if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { | |
147 info = 1; | |
148 } else if (! lsame_(trans, "N") && ! lsame_(trans, | |
149 "T") && ! lsame_(trans, "C")) { | |
150 info = 2; | |
151 } else if (! lsame_(diag, "U") && ! lsame_(diag, | |
152 "N")) { | |
153 info = 3; | |
154 } else if (*n < 0) { | |
155 info = 4; | |
156 } else if (*lda < max(1,*n)) { | |
157 info = 6; | |
158 } else if (*incx == 0) { | |
159 info = 8; | |
160 } | |
161 if (info != 0) { | |
162 xerbla_("DTRMV ", &info); | |
163 return 0; | |
164 } | |
165 | |
166 /* Quick return if possible. */ | |
167 | |
168 if (*n == 0) { | |
169 return 0; | |
170 } | |
171 | |
172 nounit = lsame_(diag, "N"); | |
173 | |
174 /* Set up the start point in X if the increment is not unity. This */ | |
175 /* will be ( N - 1 )*INCX too small for descending loops. */ | |
176 | |
177 if (*incx <= 0) { | |
178 kx = 1 - (*n - 1) * *incx; | |
179 } else if (*incx != 1) { | |
180 kx = 1; | |
181 } | |
182 | |
183 /* Start the operations. In this version the elements of A are */ | |
184 /* accessed sequentially with one pass through A. */ | |
185 | |
186 if (lsame_(trans, "N")) { | |
187 | |
188 /* Form x := A*x. */ | |
189 | |
190 if (lsame_(uplo, "U")) { | |
191 if (*incx == 1) { | |
192 i__1 = *n; | |
193 for (j = 1; j <= i__1; ++j) { | |
194 if (x[j] != 0.) { | |
195 temp = x[j]; | |
196 i__2 = j - 1; | |
197 for (i__ = 1; i__ <= i__2; ++i__) { | |
198 x[i__] += temp * a[i__ + j * a_dim1]; | |
199 /* L10: */ | |
200 } | |
201 if (nounit) { | |
202 x[j] *= a[j + j * a_dim1]; | |
203 } | |
204 } | |
205 /* L20: */ | |
206 } | |
207 } else { | |
208 jx = kx; | |
209 i__1 = *n; | |
210 for (j = 1; j <= i__1; ++j) { | |
211 if (x[jx] != 0.) { | |
212 temp = x[jx]; | |
213 ix = kx; | |
214 i__2 = j - 1; | |
215 for (i__ = 1; i__ <= i__2; ++i__) { | |
216 x[ix] += temp * a[i__ + j * a_dim1]; | |
217 ix += *incx; | |
218 /* L30: */ | |
219 } | |
220 if (nounit) { | |
221 x[jx] *= a[j + j * a_dim1]; | |
222 } | |
223 } | |
224 jx += *incx; | |
225 /* L40: */ | |
226 } | |
227 } | |
228 } else { | |
229 if (*incx == 1) { | |
230 for (j = *n; j >= 1; --j) { | |
231 if (x[j] != 0.) { | |
232 temp = x[j]; | |
233 i__1 = j + 1; | |
234 for (i__ = *n; i__ >= i__1; --i__) { | |
235 x[i__] += temp * a[i__ + j * a_dim1]; | |
236 /* L50: */ | |
237 } | |
238 if (nounit) { | |
239 x[j] *= a[j + j * a_dim1]; | |
240 } | |
241 } | |
242 /* L60: */ | |
243 } | |
244 } else { | |
245 kx += (*n - 1) * *incx; | |
246 jx = kx; | |
247 for (j = *n; j >= 1; --j) { | |
248 if (x[jx] != 0.) { | |
249 temp = x[jx]; | |
250 ix = kx; | |
251 i__1 = j + 1; | |
252 for (i__ = *n; i__ >= i__1; --i__) { | |
253 x[ix] += temp * a[i__ + j * a_dim1]; | |
254 ix -= *incx; | |
255 /* L70: */ | |
256 } | |
257 if (nounit) { | |
258 x[jx] *= a[j + j * a_dim1]; | |
259 } | |
260 } | |
261 jx -= *incx; | |
262 /* L80: */ | |
263 } | |
264 } | |
265 } | |
266 } else { | |
267 | |
268 /* Form x := A'*x. */ | |
269 | |
270 if (lsame_(uplo, "U")) { | |
271 if (*incx == 1) { | |
272 for (j = *n; j >= 1; --j) { | |
273 temp = x[j]; | |
274 if (nounit) { | |
275 temp *= a[j + j * a_dim1]; | |
276 } | |
277 for (i__ = j - 1; i__ >= 1; --i__) { | |
278 temp += a[i__ + j * a_dim1] * x[i__]; | |
279 /* L90: */ | |
280 } | |
281 x[j] = temp; | |
282 /* L100: */ | |
283 } | |
284 } else { | |
285 jx = kx + (*n - 1) * *incx; | |
286 for (j = *n; j >= 1; --j) { | |
287 temp = x[jx]; | |
288 ix = jx; | |
289 if (nounit) { | |
290 temp *= a[j + j * a_dim1]; | |
291 } | |
292 for (i__ = j - 1; i__ >= 1; --i__) { | |
293 ix -= *incx; | |
294 temp += a[i__ + j * a_dim1] * x[ix]; | |
295 /* L110: */ | |
296 } | |
297 x[jx] = temp; | |
298 jx -= *incx; | |
299 /* L120: */ | |
300 } | |
301 } | |
302 } else { | |
303 if (*incx == 1) { | |
304 i__1 = *n; | |
305 for (j = 1; j <= i__1; ++j) { | |
306 temp = x[j]; | |
307 if (nounit) { | |
308 temp *= a[j + j * a_dim1]; | |
309 } | |
310 i__2 = *n; | |
311 for (i__ = j + 1; i__ <= i__2; ++i__) { | |
312 temp += a[i__ + j * a_dim1] * x[i__]; | |
313 /* L130: */ | |
314 } | |
315 x[j] = temp; | |
316 /* L140: */ | |
317 } | |
318 } else { | |
319 jx = kx; | |
320 i__1 = *n; | |
321 for (j = 1; j <= i__1; ++j) { | |
322 temp = x[jx]; | |
323 ix = jx; | |
324 if (nounit) { | |
325 temp *= a[j + j * a_dim1]; | |
326 } | |
327 i__2 = *n; | |
328 for (i__ = j + 1; i__ <= i__2; ++i__) { | |
329 ix += *incx; | |
330 temp += a[i__ + j * a_dim1] * x[ix]; | |
331 /* L150: */ | |
332 } | |
333 x[jx] = temp; | |
334 jx += *incx; | |
335 /* L160: */ | |
336 } | |
337 } | |
338 } | |
339 } | |
340 | |
341 return 0; | |
342 | |
343 /* End of DTRMV . */ | |
344 | |
345 } /* dtrmv_ */ |