Mercurial > hg > qm-dsp
comparison ext/cblas/src/dgemv.c @ 430:335af74a25b6
Merge from branch clapack-included
author | Chris Cannam <c.cannam@qmul.ac.uk> |
---|---|
date | Fri, 30 Sep 2016 16:24:24 +0100 |
parents | 905e45637745 |
children |
comparison
equal
deleted
inserted
replaced
426:a23b9f8b4a59 | 430:335af74a25b6 |
---|---|
1 /* dgemv.f -- translated by f2c (version 20061008). | |
2 You must link the resulting object file with libf2c: | |
3 on Microsoft Windows system, link with libf2c.lib; | |
4 on Linux or Unix systems, link with .../path/to/libf2c.a -lm | |
5 or, if you install libf2c.a in a standard place, with -lf2c -lm | |
6 -- in that order, at the end of the command line, as in | |
7 cc *.o -lf2c -lm | |
8 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., | |
9 | |
10 http://www.netlib.org/f2c/libf2c.zip | |
11 */ | |
12 | |
13 #include "f2c.h" | |
14 #include "blaswrap.h" | |
15 | |
16 /* Subroutine */ int dgemv_(char *trans, integer *m, integer *n, doublereal * | |
17 alpha, doublereal *a, integer *lda, doublereal *x, integer *incx, | |
18 doublereal *beta, doublereal *y, integer *incy) | |
19 { | |
20 /* System generated locals */ | |
21 integer a_dim1, a_offset, i__1, i__2; | |
22 | |
23 /* Local variables */ | |
24 integer i__, j, ix, iy, jx, jy, kx, ky, info; | |
25 doublereal temp; | |
26 integer lenx, leny; | |
27 extern logical lsame_(char *, char *); | |
28 extern /* Subroutine */ int xerbla_(char *, integer *); | |
29 | |
30 /* .. Scalar Arguments .. */ | |
31 /* .. */ | |
32 /* .. Array Arguments .. */ | |
33 /* .. */ | |
34 | |
35 /* Purpose */ | |
36 /* ======= */ | |
37 | |
38 /* DGEMV performs one of the matrix-vector operations */ | |
39 | |
40 /* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, */ | |
41 | |
42 /* where alpha and beta are scalars, x and y are vectors and A is an */ | |
43 /* m by n matrix. */ | |
44 | |
45 /* Arguments */ | |
46 /* ========== */ | |
47 | |
48 /* TRANS - CHARACTER*1. */ | |
49 /* On entry, TRANS specifies the operation to be performed as */ | |
50 /* follows: */ | |
51 | |
52 /* TRANS = 'N' or 'n' y := alpha*A*x + beta*y. */ | |
53 | |
54 /* TRANS = 'T' or 't' y := alpha*A'*x + beta*y. */ | |
55 | |
56 /* TRANS = 'C' or 'c' y := alpha*A'*x + beta*y. */ | |
57 | |
58 /* Unchanged on exit. */ | |
59 | |
60 /* M - INTEGER. */ | |
61 /* On entry, M specifies the number of rows of the matrix A. */ | |
62 /* M must be at least zero. */ | |
63 /* Unchanged on exit. */ | |
64 | |
65 /* N - INTEGER. */ | |
66 /* On entry, N specifies the number of columns of the matrix A. */ | |
67 /* N must be at least zero. */ | |
68 /* Unchanged on exit. */ | |
69 | |
70 /* ALPHA - DOUBLE PRECISION. */ | |
71 /* On entry, ALPHA specifies the scalar alpha. */ | |
72 /* Unchanged on exit. */ | |
73 | |
74 /* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). */ | |
75 /* Before entry, the leading m by n part of the array A must */ | |
76 /* contain the matrix of coefficients. */ | |
77 /* Unchanged on exit. */ | |
78 | |
79 /* LDA - INTEGER. */ | |
80 /* On entry, LDA specifies the first dimension of A as declared */ | |
81 /* in the calling (sub) program. LDA must be at least */ | |
82 /* max( 1, m ). */ | |
83 /* Unchanged on exit. */ | |
84 | |
85 /* X - DOUBLE PRECISION array of DIMENSION at least */ | |
86 /* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' */ | |
87 /* and at least */ | |
88 /* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. */ | |
89 /* Before entry, the incremented array X must contain the */ | |
90 /* vector x. */ | |
91 /* Unchanged on exit. */ | |
92 | |
93 /* INCX - INTEGER. */ | |
94 /* On entry, INCX specifies the increment for the elements of */ | |
95 /* X. INCX must not be zero. */ | |
96 /* Unchanged on exit. */ | |
97 | |
98 /* BETA - DOUBLE PRECISION. */ | |
99 /* On entry, BETA specifies the scalar beta. When BETA is */ | |
100 /* supplied as zero then Y need not be set on input. */ | |
101 /* Unchanged on exit. */ | |
102 | |
103 /* Y - DOUBLE PRECISION array of DIMENSION at least */ | |
104 /* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' */ | |
105 /* and at least */ | |
106 /* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. */ | |
107 /* Before entry with BETA non-zero, the incremented array Y */ | |
108 /* must contain the vector y. On exit, Y is overwritten by the */ | |
109 /* updated vector y. */ | |
110 | |
111 /* INCY - INTEGER. */ | |
112 /* On entry, INCY specifies the increment for the elements of */ | |
113 /* Y. INCY must not be zero. */ | |
114 /* Unchanged on exit. */ | |
115 | |
116 | |
117 /* Level 2 Blas routine. */ | |
118 | |
119 /* -- Written on 22-October-1986. */ | |
120 /* Jack Dongarra, Argonne National Lab. */ | |
121 /* Jeremy Du Croz, Nag Central Office. */ | |
122 /* Sven Hammarling, Nag Central Office. */ | |
123 /* Richard Hanson, Sandia National Labs. */ | |
124 | |
125 | |
126 /* .. Parameters .. */ | |
127 /* .. */ | |
128 /* .. Local Scalars .. */ | |
129 /* .. */ | |
130 /* .. External Functions .. */ | |
131 /* .. */ | |
132 /* .. External Subroutines .. */ | |
133 /* .. */ | |
134 /* .. Intrinsic Functions .. */ | |
135 /* .. */ | |
136 | |
137 /* Test the input parameters. */ | |
138 | |
139 /* Parameter adjustments */ | |
140 a_dim1 = *lda; | |
141 a_offset = 1 + a_dim1; | |
142 a -= a_offset; | |
143 --x; | |
144 --y; | |
145 | |
146 /* Function Body */ | |
147 info = 0; | |
148 if (! lsame_(trans, "N") && ! lsame_(trans, "T") && ! lsame_(trans, "C") | |
149 ) { | |
150 info = 1; | |
151 } else if (*m < 0) { | |
152 info = 2; | |
153 } else if (*n < 0) { | |
154 info = 3; | |
155 } else if (*lda < max(1,*m)) { | |
156 info = 6; | |
157 } else if (*incx == 0) { | |
158 info = 8; | |
159 } else if (*incy == 0) { | |
160 info = 11; | |
161 } | |
162 if (info != 0) { | |
163 xerbla_("DGEMV ", &info); | |
164 return 0; | |
165 } | |
166 | |
167 /* Quick return if possible. */ | |
168 | |
169 if (*m == 0 || *n == 0 || *alpha == 0. && *beta == 1.) { | |
170 return 0; | |
171 } | |
172 | |
173 /* Set LENX and LENY, the lengths of the vectors x and y, and set */ | |
174 /* up the start points in X and Y. */ | |
175 | |
176 if (lsame_(trans, "N")) { | |
177 lenx = *n; | |
178 leny = *m; | |
179 } else { | |
180 lenx = *m; | |
181 leny = *n; | |
182 } | |
183 if (*incx > 0) { | |
184 kx = 1; | |
185 } else { | |
186 kx = 1 - (lenx - 1) * *incx; | |
187 } | |
188 if (*incy > 0) { | |
189 ky = 1; | |
190 } else { | |
191 ky = 1 - (leny - 1) * *incy; | |
192 } | |
193 | |
194 /* Start the operations. In this version the elements of A are */ | |
195 /* accessed sequentially with one pass through A. */ | |
196 | |
197 /* First form y := beta*y. */ | |
198 | |
199 if (*beta != 1.) { | |
200 if (*incy == 1) { | |
201 if (*beta == 0.) { | |
202 i__1 = leny; | |
203 for (i__ = 1; i__ <= i__1; ++i__) { | |
204 y[i__] = 0.; | |
205 /* L10: */ | |
206 } | |
207 } else { | |
208 i__1 = leny; | |
209 for (i__ = 1; i__ <= i__1; ++i__) { | |
210 y[i__] = *beta * y[i__]; | |
211 /* L20: */ | |
212 } | |
213 } | |
214 } else { | |
215 iy = ky; | |
216 if (*beta == 0.) { | |
217 i__1 = leny; | |
218 for (i__ = 1; i__ <= i__1; ++i__) { | |
219 y[iy] = 0.; | |
220 iy += *incy; | |
221 /* L30: */ | |
222 } | |
223 } else { | |
224 i__1 = leny; | |
225 for (i__ = 1; i__ <= i__1; ++i__) { | |
226 y[iy] = *beta * y[iy]; | |
227 iy += *incy; | |
228 /* L40: */ | |
229 } | |
230 } | |
231 } | |
232 } | |
233 if (*alpha == 0.) { | |
234 return 0; | |
235 } | |
236 if (lsame_(trans, "N")) { | |
237 | |
238 /* Form y := alpha*A*x + y. */ | |
239 | |
240 jx = kx; | |
241 if (*incy == 1) { | |
242 i__1 = *n; | |
243 for (j = 1; j <= i__1; ++j) { | |
244 if (x[jx] != 0.) { | |
245 temp = *alpha * x[jx]; | |
246 i__2 = *m; | |
247 for (i__ = 1; i__ <= i__2; ++i__) { | |
248 y[i__] += temp * a[i__ + j * a_dim1]; | |
249 /* L50: */ | |
250 } | |
251 } | |
252 jx += *incx; | |
253 /* L60: */ | |
254 } | |
255 } else { | |
256 i__1 = *n; | |
257 for (j = 1; j <= i__1; ++j) { | |
258 if (x[jx] != 0.) { | |
259 temp = *alpha * x[jx]; | |
260 iy = ky; | |
261 i__2 = *m; | |
262 for (i__ = 1; i__ <= i__2; ++i__) { | |
263 y[iy] += temp * a[i__ + j * a_dim1]; | |
264 iy += *incy; | |
265 /* L70: */ | |
266 } | |
267 } | |
268 jx += *incx; | |
269 /* L80: */ | |
270 } | |
271 } | |
272 } else { | |
273 | |
274 /* Form y := alpha*A'*x + y. */ | |
275 | |
276 jy = ky; | |
277 if (*incx == 1) { | |
278 i__1 = *n; | |
279 for (j = 1; j <= i__1; ++j) { | |
280 temp = 0.; | |
281 i__2 = *m; | |
282 for (i__ = 1; i__ <= i__2; ++i__) { | |
283 temp += a[i__ + j * a_dim1] * x[i__]; | |
284 /* L90: */ | |
285 } | |
286 y[jy] += *alpha * temp; | |
287 jy += *incy; | |
288 /* L100: */ | |
289 } | |
290 } else { | |
291 i__1 = *n; | |
292 for (j = 1; j <= i__1; ++j) { | |
293 temp = 0.; | |
294 ix = kx; | |
295 i__2 = *m; | |
296 for (i__ = 1; i__ <= i__2; ++i__) { | |
297 temp += a[i__ + j * a_dim1] * x[ix]; | |
298 ix += *incx; | |
299 /* L110: */ | |
300 } | |
301 y[jy] += *alpha * temp; | |
302 jy += *incy; | |
303 /* L120: */ | |
304 } | |
305 } | |
306 } | |
307 | |
308 return 0; | |
309 | |
310 /* End of DGEMV . */ | |
311 | |
312 } /* dgemv_ */ |