comparison ext/kissfft/test/fft.py @ 409:1f1999b0f577

Bring in kissfft into this repo (formerly a subrepo, but the remote is not responding)
author Chris Cannam <c.cannam@qmul.ac.uk>
date Tue, 21 Jul 2015 07:34:15 +0100
parents
children
comparison
equal deleted inserted replaced
408:5316fa4b0f33 409:1f1999b0f577
1 #!/usr/bin/env python
2
3 import math
4 import sys
5 import random
6
7 pi=math.pi
8 e=math.e
9 j=complex(0,1)
10
11 def fft(f,inv):
12 n=len(f)
13 if n==1:
14 return f
15
16 for p in 2,3,5:
17 if n%p==0:
18 break
19 else:
20 raise Exception('%s not factorable ' % n)
21
22 m = n/p
23 Fout=[]
24 for q in range(p): # 0,1
25 fp = f[q::p] # every p'th time sample
26 Fp = fft( fp ,inv)
27 Fout.extend( Fp )
28
29 for u in range(m):
30 scratch = Fout[u::m] # u to end in strides of m
31 for q1 in range(p):
32 k = q1*m + u # indices to Fout above that became scratch
33 Fout[ k ] = scratch[0] # cuz e**0==1 in loop below
34 for q in range(1,p):
35 if inv:
36 t = e ** ( j*2*pi*k*q/n )
37 else:
38 t = e ** ( -j*2*pi*k*q/n )
39 Fout[ k ] += scratch[q] * t
40
41 return Fout
42
43 def rifft(F):
44 N = len(F) - 1
45 Z = [0] * (N)
46 for k in range(N):
47 Fek = ( F[k] + F[-k-1].conjugate() )
48 Fok = ( F[k] - F[-k-1].conjugate() ) * e ** (j*pi*k/N)
49 Z[k] = Fek + j*Fok
50
51 fp = fft(Z , 1)
52
53 f = []
54 for c in fp:
55 f.append(c.real)
56 f.append(c.imag)
57 return f
58
59 def real_fft( f,inv ):
60 if inv:
61 return rifft(f)
62
63 N = len(f) / 2
64
65 res = f[::2]
66 ims = f[1::2]
67
68 fp = [ complex(r,i) for r,i in zip(res,ims) ]
69 print 'fft input ', fp
70 Fp = fft( fp ,0 )
71 print 'fft output ', Fp
72
73 F = [ complex(0,0) ] * ( N+1 )
74
75 F[0] = complex( Fp[0].real + Fp[0].imag , 0 )
76
77 for k in range(1,N/2+1):
78 tw = e ** ( -j*pi*(.5+float(k)/N ) )
79
80 F1k = Fp[k] + Fp[N-k].conjugate()
81 F2k = Fp[k] - Fp[N-k].conjugate()
82 F2k *= tw
83 F[k] = ( F1k + F2k ) * .5
84 F[N-k] = ( F1k - F2k ).conjugate() * .5
85 #F[N-k] = ( F1kp + e ** ( -j*pi*(.5+float(N-k)/N ) ) * F2kp ) * .5
86 #F[N-k] = ( F1k.conjugate() - tw.conjugate() * F2k.conjugate() ) * .5
87
88 F[N] = complex( Fp[0].real - Fp[0].imag , 0 )
89 return F
90
91 def main():
92 #fft_func = fft
93 fft_func = real_fft
94
95 tvec = [0.309655,0.815653,0.768570,0.591841,0.404767,0.637617,0.007803,0.012665]
96 Ftvec = [ complex(r,i) for r,i in zip(
97 [3.548571,-0.378761,-0.061950,0.188537,-0.566981,0.188537,-0.061950,-0.378761],
98 [0.000000,-1.296198,-0.848764,0.225337,0.000000,-0.225337,0.848764,1.296198] ) ]
99
100 F = fft_func( tvec,0 )
101
102 nerrs= 0
103 for i in range(len(Ftvec)/2 + 1):
104 if abs( F[i] - Ftvec[i] )> 1e-5:
105 print 'F[%d]: %s != %s' % (i,F[i],Ftvec[i])
106 nerrs += 1
107
108 print '%d errors in forward fft' % nerrs
109 if nerrs:
110 return
111
112 trec = fft_func( F , 1 )
113
114 for i in range(len(trec) ):
115 trec[i] /= len(trec)
116
117 for i in range(len(tvec) ):
118 if abs( trec[i] - tvec[i] )> 1e-5:
119 print 't[%d]: %s != %s' % (i,tvec[i],trec[i])
120 nerrs += 1
121
122 print '%d errors in reverse fft' % nerrs
123
124
125 def make_random(dims=[1]):
126 import Numeric
127 res = []
128 for i in range(dims[0]):
129 if len(dims)==1:
130 r=random.uniform(-1,1)
131 i=random.uniform(-1,1)
132 res.append( complex(r,i) )
133 else:
134 res.append( make_random( dims[1:] ) )
135 return Numeric.array(res)
136
137 def flatten(x):
138 import Numeric
139 ntotal = Numeric.product(Numeric.shape(x))
140 return Numeric.reshape(x,(ntotal,))
141
142 def randmat( ndims ):
143 dims=[]
144 for i in range( ndims ):
145 curdim = int( random.uniform(2,4) )
146 dims.append( curdim )
147 return make_random(dims )
148
149 def test_fftnd(ndims=3):
150 import FFT
151 import Numeric
152
153 x=randmat( ndims )
154 print 'dimensions=%s' % str( Numeric.shape(x) )
155 #print 'x=%s' %str(x)
156 xver = FFT.fftnd(x)
157 x2=myfftnd(x)
158 err = xver - x2
159 errf = flatten(err)
160 xverf = flatten(xver)
161 errpow = Numeric.vdot(errf,errf)+1e-10
162 sigpow = Numeric.vdot(xverf,xverf)+1e-10
163 snr = 10*math.log10(abs(sigpow/errpow) )
164 if snr<80:
165 print xver
166 print x2
167 print 'SNR=%sdB' % str( snr )
168
169 def myfftnd(x):
170 import Numeric
171 xf = flatten(x)
172 Xf = fftndwork( xf , Numeric.shape(x) )
173 return Numeric.reshape(Xf,Numeric.shape(x) )
174
175 def fftndwork(x,dims):
176 import Numeric
177 dimprod=Numeric.product( dims )
178
179 for k in range( len(dims) ):
180 cur_dim=dims[ k ]
181 stride=dimprod/cur_dim
182 next_x = [complex(0,0)]*len(x)
183 for i in range(stride):
184 next_x[i*cur_dim:(i+1)*cur_dim] = fft(x[i:(i+cur_dim)*stride:stride],0)
185 x = next_x
186 return x
187
188 if __name__ == "__main__":
189 try:
190 nd = int(sys.argv[1])
191 except:
192 nd=None
193 if nd:
194 test_fftnd( nd )
195 else:
196 sys.exit(0)