annotate base/Window.h @ 73:dcb555b90924

* Key detector: when returning key strengths, use the peak value of the three underlying chromagram correlations (from 36-bin chromagram) corresponding to each key, instead of the mean. Rationale: This is the same method as used when returning the key value, and it's nice to have the same results in both returned value and plot. The peak performed better than the sum with a simple test set of triads, so it seems reasonable to change the plot to match the key output rather than the other way around. * FFT: kiss_fftr returns only the non-conjugate bins, synthesise the rest rather than leaving them (perhaps dangerously) undefined. Fixes an uninitialised data error in chromagram that could cause garbage results from key detector. * Constant Q: remove precalculated values again, I reckon they're not proving such a good tradeoff.
author cannam
date Fri, 05 Jun 2009 15:12:39 +0000
parents 7fe29d8a7eaf
children e5907ae6de17
rev   line source
cannam@0 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
cannam@0 2
cannam@0 3 /*
cannam@0 4 QM DSP library
cannam@0 5 Centre for Digital Music, Queen Mary, University of London.
cannam@0 6 This file Copyright 2006 Chris Cannam.
cannam@0 7 All rights reserved.
cannam@0 8 */
cannam@0 9
cannam@0 10 #ifndef _WINDOW_H_
cannam@0 11 #define _WINDOW_H_
cannam@0 12
cannam@0 13 #include <cmath>
cannam@0 14 #include <iostream>
cannam@0 15 #include <map>
cannam@0 16
cannam@0 17 enum WindowType {
cannam@0 18 RectangularWindow,
cannam@0 19 BartlettWindow,
cannam@0 20 HammingWindow,
cannam@0 21 HanningWindow,
cannam@0 22 BlackmanWindow,
cannam@0 23 GaussianWindow,
cannam@0 24 ParzenWindow
cannam@0 25 };
cannam@0 26
cannam@0 27 template <typename T>
cannam@0 28 class Window
cannam@0 29 {
cannam@0 30 public:
cannam@0 31 /**
cannam@0 32 * Construct a windower of the given type.
cannam@0 33 */
cannam@0 34 Window(WindowType type, size_t size) : m_type(type), m_size(size) { encache(); }
cannam@0 35 Window(const Window &w) : m_type(w.m_type), m_size(w.m_size) { encache(); }
cannam@0 36 Window &operator=(const Window &w) {
cannam@0 37 if (&w == this) return *this;
cannam@0 38 m_type = w.m_type;
cannam@0 39 m_size = w.m_size;
cannam@0 40 encache();
cannam@0 41 return *this;
cannam@0 42 }
cannam@26 43 virtual ~Window() { delete[] m_cache; }
cannam@0 44
cannam@0 45 void cut(T *src) const { cut(src, src); }
cannam@55 46 void cut(const T *src, T *dst) const {
cannam@0 47 for (size_t i = 0; i < m_size; ++i) dst[i] = src[i] * m_cache[i];
cannam@0 48 }
cannam@0 49
cannam@0 50 WindowType getType() const { return m_type; }
cannam@0 51 size_t getSize() const { return m_size; }
cannam@0 52
cannam@0 53 protected:
cannam@0 54 WindowType m_type;
cannam@0 55 size_t m_size;
cannam@0 56 T *m_cache;
cannam@0 57
cannam@0 58 void encache();
cannam@0 59 };
cannam@0 60
cannam@0 61 template <typename T>
cannam@0 62 void Window<T>::encache()
cannam@0 63 {
cannam@0 64 size_t n = m_size;
cannam@0 65 T *mult = new T[n];
cannam@0 66 size_t i;
cannam@0 67 for (i = 0; i < n; ++i) mult[i] = 1.0;
cannam@0 68
cannam@0 69 switch (m_type) {
cannam@0 70
cannam@0 71 case RectangularWindow:
cannam@0 72 for (i = 0; i < n; ++i) {
cannam@0 73 mult[i] = mult[i] * 0.5;
cannam@0 74 }
cannam@0 75 break;
cannam@0 76
cannam@0 77 case BartlettWindow:
cannam@0 78 for (i = 0; i < n/2; ++i) {
cannam@0 79 mult[i] = mult[i] * (i / T(n/2));
cannam@0 80 mult[i + n/2] = mult[i + n/2] * (1.0 - (i / T(n/2)));
cannam@0 81 }
cannam@0 82 break;
cannam@0 83
cannam@0 84 case HammingWindow:
cannam@0 85 for (i = 0; i < n; ++i) {
cannam@0 86 mult[i] = mult[i] * (0.54 - 0.46 * cos(2 * M_PI * i / n));
cannam@0 87 }
cannam@0 88 break;
cannam@0 89
cannam@0 90 case HanningWindow:
cannam@0 91 for (i = 0; i < n; ++i) {
cannam@0 92 mult[i] = mult[i] * (0.50 - 0.50 * cos(2 * M_PI * i / n));
cannam@0 93 }
cannam@0 94 break;
cannam@0 95
cannam@0 96 case BlackmanWindow:
cannam@0 97 for (i = 0; i < n; ++i) {
cannam@0 98 mult[i] = mult[i] * (0.42 - 0.50 * cos(2 * M_PI * i / n)
cannam@0 99 + 0.08 * cos(4 * M_PI * i / n));
cannam@0 100 }
cannam@0 101 break;
cannam@0 102
cannam@0 103 case GaussianWindow:
cannam@0 104 for (i = 0; i < n; ++i) {
cannam@0 105 mult[i] = mult[i] * exp((-1.0 / (n*n)) * ((T(2*i) - n) *
cannam@0 106 (T(2*i) - n)));
cannam@0 107 }
cannam@0 108 break;
cannam@0 109
cannam@0 110 case ParzenWindow:
cannam@0 111 for (i = 0; i < n; ++i) {
cannam@0 112 mult[i] = mult[i] * (1.0 - fabs((T(2*i) - n) / T(n + 1)));
cannam@0 113 }
cannam@0 114 break;
cannam@0 115 }
cannam@0 116
cannam@0 117 m_cache = mult;
cannam@0 118 }
cannam@0 119
cannam@0 120 #endif