annotate dsp/transforms/FFT.cpp @ 0:d7116e3183f8

* Queen Mary C++ DSP library
author cannam
date Wed, 05 Apr 2006 17:35:59 +0000
parents
children a251fb0de594
rev   line source
cannam@0 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
cannam@0 2
cannam@0 3 /*
cannam@0 4 QM DSP Library
cannam@0 5
cannam@0 6 Centre for Digital Music, Queen Mary, University of London.
cannam@0 7 This file is based on Don Cross's public domain FFT implementation.
cannam@0 8 */
cannam@0 9
cannam@0 10 #include "FFT.h"
cannam@0 11 #include <cmath>
cannam@0 12
cannam@0 13 //////////////////////////////////////////////////////////////////////
cannam@0 14 // Construction/Destruction
cannam@0 15 //////////////////////////////////////////////////////////////////////
cannam@0 16
cannam@0 17 FFT::FFT()
cannam@0 18 {
cannam@0 19
cannam@0 20 }
cannam@0 21
cannam@0 22 FFT::~FFT()
cannam@0 23 {
cannam@0 24
cannam@0 25 }
cannam@0 26
cannam@0 27 void FFT::process(unsigned int p_nSamples, bool p_bInverseTransform, double *p_lpRealIn, double *p_lpImagIn, double *p_lpRealOut, double *p_lpImagOut)
cannam@0 28 {
cannam@0 29
cannam@0 30 if(!p_lpRealIn || !p_lpRealOut || !p_lpImagOut) return;
cannam@0 31
cannam@0 32
cannam@0 33 unsigned int NumBits;
cannam@0 34 unsigned int i, j, k, n;
cannam@0 35 unsigned int BlockSize, BlockEnd;
cannam@0 36
cannam@0 37 double angle_numerator = 2.0 * M_PI;
cannam@0 38 double tr, ti;
cannam@0 39
cannam@0 40 if( !isPowerOfTwo(p_nSamples) )
cannam@0 41 {
cannam@0 42 return;
cannam@0 43 }
cannam@0 44
cannam@0 45 if( p_bInverseTransform ) angle_numerator = -angle_numerator;
cannam@0 46
cannam@0 47 NumBits = numberOfBitsNeeded ( p_nSamples );
cannam@0 48
cannam@0 49
cannam@0 50 for( i=0; i < p_nSamples; i++ )
cannam@0 51 {
cannam@0 52 j = reverseBits ( i, NumBits );
cannam@0 53 p_lpRealOut[j] = p_lpRealIn[i];
cannam@0 54 p_lpImagOut[j] = (p_lpImagIn == 0) ? 0.0 : p_lpImagIn[i];
cannam@0 55 }
cannam@0 56
cannam@0 57
cannam@0 58 BlockEnd = 1;
cannam@0 59 for( BlockSize = 2; BlockSize <= p_nSamples; BlockSize <<= 1 )
cannam@0 60 {
cannam@0 61 double delta_angle = angle_numerator / (double)BlockSize;
cannam@0 62 double sm2 = -sin ( -2 * delta_angle );
cannam@0 63 double sm1 = -sin ( -delta_angle );
cannam@0 64 double cm2 = cos ( -2 * delta_angle );
cannam@0 65 double cm1 = cos ( -delta_angle );
cannam@0 66 double w = 2 * cm1;
cannam@0 67 double ar[3], ai[3];
cannam@0 68
cannam@0 69 for( i=0; i < p_nSamples; i += BlockSize )
cannam@0 70 {
cannam@0 71
cannam@0 72 ar[2] = cm2;
cannam@0 73 ar[1] = cm1;
cannam@0 74
cannam@0 75 ai[2] = sm2;
cannam@0 76 ai[1] = sm1;
cannam@0 77
cannam@0 78 for ( j=i, n=0; n < BlockEnd; j++, n++ )
cannam@0 79 {
cannam@0 80
cannam@0 81 ar[0] = w*ar[1] - ar[2];
cannam@0 82 ar[2] = ar[1];
cannam@0 83 ar[1] = ar[0];
cannam@0 84
cannam@0 85 ai[0] = w*ai[1] - ai[2];
cannam@0 86 ai[2] = ai[1];
cannam@0 87 ai[1] = ai[0];
cannam@0 88
cannam@0 89 k = j + BlockEnd;
cannam@0 90 tr = ar[0]*p_lpRealOut[k] - ai[0]*p_lpImagOut[k];
cannam@0 91 ti = ar[0]*p_lpImagOut[k] + ai[0]*p_lpRealOut[k];
cannam@0 92
cannam@0 93 p_lpRealOut[k] = p_lpRealOut[j] - tr;
cannam@0 94 p_lpImagOut[k] = p_lpImagOut[j] - ti;
cannam@0 95
cannam@0 96 p_lpRealOut[j] += tr;
cannam@0 97 p_lpImagOut[j] += ti;
cannam@0 98
cannam@0 99 }
cannam@0 100 }
cannam@0 101
cannam@0 102 BlockEnd = BlockSize;
cannam@0 103
cannam@0 104 }
cannam@0 105
cannam@0 106
cannam@0 107 if( p_bInverseTransform )
cannam@0 108 {
cannam@0 109 double denom = (double)p_nSamples;
cannam@0 110
cannam@0 111 for ( i=0; i < p_nSamples; i++ )
cannam@0 112 {
cannam@0 113 p_lpRealOut[i] /= denom;
cannam@0 114 p_lpImagOut[i] /= denom;
cannam@0 115 }
cannam@0 116 }
cannam@0 117 }
cannam@0 118
cannam@0 119 bool FFT::isPowerOfTwo(unsigned int p_nX)
cannam@0 120 {
cannam@0 121 if( p_nX < 2 ) return false;
cannam@0 122
cannam@0 123 if( p_nX & (p_nX-1) ) return false;
cannam@0 124
cannam@0 125 return true;
cannam@0 126 }
cannam@0 127
cannam@0 128 unsigned int FFT::numberOfBitsNeeded(unsigned int p_nSamples)
cannam@0 129 {
cannam@0 130 int i;
cannam@0 131
cannam@0 132 if( p_nSamples < 2 )
cannam@0 133 {
cannam@0 134 return 0;
cannam@0 135 }
cannam@0 136
cannam@0 137 for ( i=0; ; i++ )
cannam@0 138 {
cannam@0 139 if( p_nSamples & (1 << i) ) return i;
cannam@0 140 }
cannam@0 141 }
cannam@0 142
cannam@0 143 unsigned int FFT::reverseBits(unsigned int p_nIndex, unsigned int p_nBits)
cannam@0 144 {
cannam@0 145 unsigned int i, rev;
cannam@0 146
cannam@0 147 for(i=rev=0; i < p_nBits; i++)
cannam@0 148 {
cannam@0 149 rev = (rev << 1) | (p_nIndex & 1);
cannam@0 150 p_nIndex >>= 1;
cannam@0 151 }
cannam@0 152
cannam@0 153 return rev;
cannam@0 154 }