annotate thread/BlockAllocator.h @ 209:ccd2019190bf msvc

Some MSVC fixes, including (temporarily, probably) renaming the FFT source file to avoid getting it mixed up with the Vamp SDK one in our object dir
author Chris Cannam
date Thu, 01 Feb 2018 16:34:08 +0000
parents 516c86946900
children 701233f8ed41
rev   line source
cannam@67 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
cannam@67 2
cannam@67 3 /*
cannam@67 4 QM DSP Library
cannam@67 5
cannam@67 6 Centre for Digital Music, Queen Mary, University of London.
cannam@67 7
cannam@67 8 This file is derived from the FSB Allocator by Juha Nieminen. The
cannam@67 9 underlying method is unchanged, but the class has been refactored
cannam@67 10 to permit multiple separate allocators (e.g. one per thread)
cannam@67 11 rather than use a single global one (and to fit house style).
cannam@67 12
cannam@67 13 Copyright (c) 2008 Juha Nieminen
cannam@67 14
cannam@67 15 Permission is hereby granted, free of charge, to any person obtaining a copy
cannam@67 16 of this software and associated documentation files (the "Software"), to deal
cannam@67 17 in the Software without restriction, including without limitation the rights
cannam@67 18 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
cannam@67 19 copies of the Software, and to permit persons to whom the Software is
cannam@67 20 furnished to do so, subject to the following conditions:
cannam@67 21
cannam@67 22 The above copyright notice and this permission notice shall be included in
cannam@67 23 all copies or substantial portions of the Software.
cannam@67 24
cannam@67 25 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
cannam@67 26 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
cannam@67 27 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
cannam@67 28 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
cannam@67 29 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
cannam@67 30 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
cannam@67 31 THE SOFTWARE.
cannam@67 32 */
cannam@67 33
cannam@67 34 #ifndef _BLOCK_ALLOCATOR_H_
cannam@67 35 #define _BLOCK_ALLOCATOR_H_
cannam@67 36
cannam@67 37 #include <cstdlib>
cannam@67 38
cannam@67 39 /**
cannam@67 40 * BlockAllocator is a simple allocator for fixed-size (usually small)
cannam@67 41 * chunks of memory. The size of an element is specified in the
cannam@67 42 * BlockAllocator constructor, and the functions allocate() and
cannam@67 43 * deallocate() are used to obtain and release a single element at a
cannam@67 44 * time.
cannam@67 45 *
cannam@67 46 * BlockAllocator may be an appropriate class to use in situations
cannam@67 47 * involving a very large number of allocations and deallocations of
cannam@67 48 * simple, identical objects across multiple threads (a hard situation
cannam@67 49 * for a generic system malloc implementation to handle well). Retain
cannam@67 50 * one BlockAllocator per thread (the class itself is not
cannam@67 51 * thread-safe), and ensure that each thread uses its own allocator
cannam@67 52 * exclusively.
cannam@67 53 *
cannam@67 54 * BlockAllocator is based on Juha Nieminen's more general
cannam@67 55 * FSBAllocator.
cannam@67 56 */
cannam@67 57 class BlockAllocator
cannam@67 58 {
cannam@67 59 public:
cannam@67 60 typedef std::size_t data_t;
cannam@67 61
cannam@67 62 BlockAllocator(int elementSize) : m_sz(elementSize) { }
cannam@67 63
cannam@67 64 void *
cannam@67 65 allocate()
cannam@67 66 {
cannam@67 67 if (m_freelist.empty()) {
cannam@67 68 m_freelist.push_back(m_blocks.data.size());
cannam@67 69 m_blocks.data.push_back(Block(this));
cannam@67 70 }
cannam@67 71
cannam@67 72 const data_t index = m_freelist.back();
cannam@67 73 Block &block = m_blocks.data[index];
cannam@67 74 void *retval = block.allocate(index);
cannam@67 75 if (block.isFull()) m_freelist.pop_back();
cannam@67 76
cannam@67 77 return retval;
cannam@67 78 }
cannam@67 79
cannam@67 80 void
cannam@67 81 deallocate(void *ptr)
cannam@67 82 {
cannam@67 83 if (!ptr) return;
cannam@67 84
cannam@67 85 data_t *unitPtr = (data_t *)ptr;
cannam@67 86 const data_t blockIndex = unitPtr[elementSizeInDataUnits()];
cannam@67 87 Block& block = m_blocks.data[blockIndex];
cannam@67 88
cannam@67 89 if (block.isFull()) m_freelist.push_back(blockIndex);
cannam@67 90 block.deallocate(unitPtr);
cannam@67 91 }
cannam@67 92
cannam@67 93 private:
cannam@67 94 inline data_t elementsPerBlock() const {
cannam@67 95 return 512;
cannam@67 96 }
cannam@67 97 inline data_t dataSize() const {
cannam@67 98 return sizeof(data_t);
cannam@67 99 }
cannam@67 100 inline data_t elementSizeInDataUnits() const {
cannam@67 101 return (m_sz + (dataSize() - 1)) / dataSize();
cannam@67 102 }
cannam@67 103 inline data_t unitSizeInDataUnits() const {
cannam@67 104 return elementSizeInDataUnits() + 1;
cannam@67 105 }
cannam@67 106 inline data_t blockSizeInDataUnits() const {
cannam@67 107 return elementsPerBlock() * unitSizeInDataUnits();
cannam@67 108 }
cannam@67 109
cannam@67 110 class Block
cannam@67 111 {
cannam@67 112 public:
cannam@67 113 Block(BlockAllocator *a) :
cannam@67 114 m_a(a),
cannam@67 115 m_block(0),
cannam@67 116 m_firstFreeUnit(data_t(-1)),
cannam@67 117 m_allocated(0),
cannam@67 118 m_end(0)
cannam@67 119 {}
cannam@67 120
cannam@67 121 ~Block() {
cannam@67 122 delete[] m_block;
cannam@67 123 }
cannam@67 124
cannam@67 125 bool isFull() const {
cannam@67 126 return m_allocated == m_a->elementsPerBlock();
cannam@67 127 }
cannam@67 128
cannam@67 129 void clear() {
cannam@67 130 delete[] m_block;
cannam@67 131 m_block = 0;
cannam@67 132 m_firstFreeUnit = data_t(-1);
cannam@67 133 }
cannam@67 134
cannam@67 135 void *allocate(data_t index) {
cannam@67 136
cannam@67 137 if (m_firstFreeUnit == data_t(-1)) {
cannam@67 138
cannam@67 139 if (!m_block) {
cannam@67 140 m_block = new data_t[m_a->blockSizeInDataUnits()];
cannam@67 141 m_end = 0;
cannam@67 142 }
cannam@67 143
cannam@67 144 data_t *retval = m_block + m_end;
cannam@67 145 m_end += m_a->unitSizeInDataUnits();
cannam@67 146 retval[m_a->elementSizeInDataUnits()] = index;
cannam@67 147 ++m_allocated;
cannam@67 148 return retval;
cannam@67 149
cannam@67 150 } else {
cannam@67 151
cannam@67 152 data_t *retval = m_block + m_firstFreeUnit;
cannam@67 153 m_firstFreeUnit = *retval;
cannam@67 154 ++m_allocated;
cannam@67 155 return retval;
cannam@67 156 }
cannam@67 157 }
cannam@67 158
cannam@67 159 void deallocate(data_t *ptr) {
cannam@67 160
cannam@67 161 *ptr = m_firstFreeUnit;
cannam@67 162 m_firstFreeUnit = ptr - m_block;
cannam@67 163
cannam@67 164 if (--m_allocated == 0) clear();
cannam@67 165 }
cannam@67 166
cannam@67 167 private:
cannam@67 168 const BlockAllocator *m_a;
cannam@67 169 data_t *m_block;
cannam@67 170 data_t m_firstFreeUnit;
cannam@67 171 data_t m_allocated;
cannam@67 172 data_t m_end;
cannam@67 173 };
cannam@67 174
cannam@67 175 struct Blocks
cannam@67 176 {
cannam@67 177 std::vector<Block> data;
cannam@67 178
cannam@67 179 Blocks() {
cannam@67 180 data.reserve(1024);
cannam@67 181 }
cannam@67 182 };
cannam@67 183
cannam@67 184 const int m_sz;
cannam@67 185 Blocks m_blocks;
cannam@67 186 std::vector<data_t> m_freelist;
cannam@67 187 };
cannam@67 188
cannam@67 189 #endif