annotate ext/clapack/src/dlaswp.c @ 211:a41bea655151 msvc

Rename FFT back again, now we have our own project
author Chris Cannam
date Mon, 05 Feb 2018 17:40:13 +0000
parents 45330e0d2819
children
rev   line source
Chris@202 1 /* dlaswp.f -- translated by f2c (version 20061008).
Chris@202 2 You must link the resulting object file with libf2c:
Chris@202 3 on Microsoft Windows system, link with libf2c.lib;
Chris@202 4 on Linux or Unix systems, link with .../path/to/libf2c.a -lm
Chris@202 5 or, if you install libf2c.a in a standard place, with -lf2c -lm
Chris@202 6 -- in that order, at the end of the command line, as in
Chris@202 7 cc *.o -lf2c -lm
Chris@202 8 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
Chris@202 9
Chris@202 10 http://www.netlib.org/f2c/libf2c.zip
Chris@202 11 */
Chris@202 12
Chris@202 13 #include "f2c.h"
Chris@202 14 #include "blaswrap.h"
Chris@202 15
Chris@202 16 /* Subroutine */ int dlaswp_(integer *n, doublereal *a, integer *lda, integer
Chris@202 17 *k1, integer *k2, integer *ipiv, integer *incx)
Chris@202 18 {
Chris@202 19 /* System generated locals */
Chris@202 20 integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
Chris@202 21
Chris@202 22 /* Local variables */
Chris@202 23 integer i__, j, k, i1, i2, n32, ip, ix, ix0, inc;
Chris@202 24 doublereal temp;
Chris@202 25
Chris@202 26
Chris@202 27 /* -- LAPACK auxiliary routine (version 3.2) -- */
Chris@202 28 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
Chris@202 29 /* November 2006 */
Chris@202 30
Chris@202 31 /* .. Scalar Arguments .. */
Chris@202 32 /* .. */
Chris@202 33 /* .. Array Arguments .. */
Chris@202 34 /* .. */
Chris@202 35
Chris@202 36 /* Purpose */
Chris@202 37 /* ======= */
Chris@202 38
Chris@202 39 /* DLASWP performs a series of row interchanges on the matrix A. */
Chris@202 40 /* One row interchange is initiated for each of rows K1 through K2 of A. */
Chris@202 41
Chris@202 42 /* Arguments */
Chris@202 43 /* ========= */
Chris@202 44
Chris@202 45 /* N (input) INTEGER */
Chris@202 46 /* The number of columns of the matrix A. */
Chris@202 47
Chris@202 48 /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
Chris@202 49 /* On entry, the matrix of column dimension N to which the row */
Chris@202 50 /* interchanges will be applied. */
Chris@202 51 /* On exit, the permuted matrix. */
Chris@202 52
Chris@202 53 /* LDA (input) INTEGER */
Chris@202 54 /* The leading dimension of the array A. */
Chris@202 55
Chris@202 56 /* K1 (input) INTEGER */
Chris@202 57 /* The first element of IPIV for which a row interchange will */
Chris@202 58 /* be done. */
Chris@202 59
Chris@202 60 /* K2 (input) INTEGER */
Chris@202 61 /* The last element of IPIV for which a row interchange will */
Chris@202 62 /* be done. */
Chris@202 63
Chris@202 64 /* IPIV (input) INTEGER array, dimension (K2*abs(INCX)) */
Chris@202 65 /* The vector of pivot indices. Only the elements in positions */
Chris@202 66 /* K1 through K2 of IPIV are accessed. */
Chris@202 67 /* IPIV(K) = L implies rows K and L are to be interchanged. */
Chris@202 68
Chris@202 69 /* INCX (input) INTEGER */
Chris@202 70 /* The increment between successive values of IPIV. If IPIV */
Chris@202 71 /* is negative, the pivots are applied in reverse order. */
Chris@202 72
Chris@202 73 /* Further Details */
Chris@202 74 /* =============== */
Chris@202 75
Chris@202 76 /* Modified by */
Chris@202 77 /* R. C. Whaley, Computer Science Dept., Univ. of Tenn., Knoxville, USA */
Chris@202 78
Chris@202 79 /* ===================================================================== */
Chris@202 80
Chris@202 81 /* .. Local Scalars .. */
Chris@202 82 /* .. */
Chris@202 83 /* .. Executable Statements .. */
Chris@202 84
Chris@202 85 /* Interchange row I with row IPIV(I) for each of rows K1 through K2. */
Chris@202 86
Chris@202 87 /* Parameter adjustments */
Chris@202 88 a_dim1 = *lda;
Chris@202 89 a_offset = 1 + a_dim1;
Chris@202 90 a -= a_offset;
Chris@202 91 --ipiv;
Chris@202 92
Chris@202 93 /* Function Body */
Chris@202 94 if (*incx > 0) {
Chris@202 95 ix0 = *k1;
Chris@202 96 i1 = *k1;
Chris@202 97 i2 = *k2;
Chris@202 98 inc = 1;
Chris@202 99 } else if (*incx < 0) {
Chris@202 100 ix0 = (1 - *k2) * *incx + 1;
Chris@202 101 i1 = *k2;
Chris@202 102 i2 = *k1;
Chris@202 103 inc = -1;
Chris@202 104 } else {
Chris@202 105 return 0;
Chris@202 106 }
Chris@202 107
Chris@202 108 n32 = *n / 32 << 5;
Chris@202 109 if (n32 != 0) {
Chris@202 110 i__1 = n32;
Chris@202 111 for (j = 1; j <= i__1; j += 32) {
Chris@202 112 ix = ix0;
Chris@202 113 i__2 = i2;
Chris@202 114 i__3 = inc;
Chris@202 115 for (i__ = i1; i__3 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__3)
Chris@202 116 {
Chris@202 117 ip = ipiv[ix];
Chris@202 118 if (ip != i__) {
Chris@202 119 i__4 = j + 31;
Chris@202 120 for (k = j; k <= i__4; ++k) {
Chris@202 121 temp = a[i__ + k * a_dim1];
Chris@202 122 a[i__ + k * a_dim1] = a[ip + k * a_dim1];
Chris@202 123 a[ip + k * a_dim1] = temp;
Chris@202 124 /* L10: */
Chris@202 125 }
Chris@202 126 }
Chris@202 127 ix += *incx;
Chris@202 128 /* L20: */
Chris@202 129 }
Chris@202 130 /* L30: */
Chris@202 131 }
Chris@202 132 }
Chris@202 133 if (n32 != *n) {
Chris@202 134 ++n32;
Chris@202 135 ix = ix0;
Chris@202 136 i__1 = i2;
Chris@202 137 i__3 = inc;
Chris@202 138 for (i__ = i1; i__3 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__3) {
Chris@202 139 ip = ipiv[ix];
Chris@202 140 if (ip != i__) {
Chris@202 141 i__2 = *n;
Chris@202 142 for (k = n32; k <= i__2; ++k) {
Chris@202 143 temp = a[i__ + k * a_dim1];
Chris@202 144 a[i__ + k * a_dim1] = a[ip + k * a_dim1];
Chris@202 145 a[ip + k * a_dim1] = temp;
Chris@202 146 /* L40: */
Chris@202 147 }
Chris@202 148 }
Chris@202 149 ix += *incx;
Chris@202 150 /* L50: */
Chris@202 151 }
Chris@202 152 }
Chris@202 153
Chris@202 154 return 0;
Chris@202 155
Chris@202 156 /* End of DLASWP */
Chris@202 157
Chris@202 158 } /* dlaswp_ */