annotate maths/KLDivergence.h @ 96:88f3cfcff55f

A threshold (delta) is added in the peak picking parameters structure (PPickParams). It is used as an offset when computing the smoothed detection function. A constructor for the structure PPickParams is also added to set the parameters to 0 when a structure instance is created. Hence programmes using the peak picking parameter structure and which do not set the delta parameter (e.g. QM Vamp note onset detector) won't be affected by the modifications. Functions modified: - dsp/onsets/PeakPicking.cpp - dsp/onsets/PeakPicking.h - dsp/signalconditioning/DFProcess.cpp - dsp/signalconditioning/DFProcess.h
author mathieub <mathieu.barthet@eecs.qmul.ac.uk>
date Mon, 20 Jun 2011 19:01:48 +0100
parents e5907ae6de17
children 701233f8ed41
rev   line source
cannam@31 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
cannam@31 2
cannam@31 3 /*
cannam@31 4 QM DSP Library
cannam@31 5
cannam@31 6 Centre for Digital Music, Queen Mary, University of London.
cannam@33 7 This file copyright 2008 QMUL.
Chris@84 8
Chris@84 9 This program is free software; you can redistribute it and/or
Chris@84 10 modify it under the terms of the GNU General Public License as
Chris@84 11 published by the Free Software Foundation; either version 2 of the
Chris@84 12 License, or (at your option) any later version. See the file
Chris@84 13 COPYING included with this distribution for more information.
cannam@31 14 */
cannam@31 15
cannam@31 16 #ifndef KLDIVERGENCE_H
cannam@31 17 #define KLDIVERGENCE_H
cannam@31 18
cannam@31 19 #include <vector>
cannam@31 20
cannam@31 21 using std::vector;
cannam@31 22
cannam@31 23 /**
cannam@33 24 * Helper methods for calculating Kullback-Leibler divergences.
cannam@31 25 */
cannam@31 26 class KLDivergence
cannam@31 27 {
cannam@31 28 public:
cannam@31 29 KLDivergence() { }
cannam@31 30 ~KLDivergence() { }
cannam@31 31
cannam@33 32 /**
cannam@33 33 * Calculate a symmetrised Kullback-Leibler divergence of Gaussian
cannam@33 34 * models based on mean and variance vectors. All input vectors
cannam@33 35 * must be of equal size.
cannam@33 36 */
cannam@33 37 double distanceGaussian(const vector<double> &means1,
cannam@33 38 const vector<double> &variances1,
cannam@33 39 const vector<double> &means2,
cannam@33 40 const vector<double> &variances2);
cannam@33 41
cannam@33 42 /**
cannam@33 43 * Calculate a Kullback-Leibler divergence of two probability
cannam@33 44 * distributions. Input vectors must be of equal size. If
cannam@33 45 * symmetrised is true, the result will be the symmetrised
cannam@33 46 * distance (equal to KL(d1, d2) + KL(d2, d1)).
cannam@33 47 */
cannam@33 48 double distanceDistribution(const vector<double> &d1,
cannam@33 49 const vector<double> &d2,
cannam@33 50 bool symmetrised);
cannam@31 51 };
cannam@31 52
cannam@31 53 #endif
cannam@31 54