annotate dsp/onsets/DetectionFunction.cpp @ 55:7fe29d8a7eaf

* Various fixes related to the bar estimator code
author cannam
date Tue, 10 Feb 2009 16:37:11 +0000
parents 5bec06ecc88a
children 6cb2b3cd5356
rev   line source
cannam@0 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
cannam@0 2
cannam@0 3 /*
cannam@0 4 QM DSP Library
cannam@0 5
cannam@0 6 Centre for Digital Music, Queen Mary, University of London.
cannam@0 7 This file copyright 2005-2006 Christian Landone.
cannam@0 8 All rights reserved.
cannam@0 9 */
cannam@0 10
cannam@0 11 #include "DetectionFunction.h"
cannam@47 12 #include <cstring>
cannam@0 13
cannam@0 14 //////////////////////////////////////////////////////////////////////
cannam@0 15 // Construction/Destruction
cannam@0 16 //////////////////////////////////////////////////////////////////////
cannam@0 17
cannam@0 18 DetectionFunction::DetectionFunction( DFConfig Config ) :
cannam@0 19 m_window(0)
cannam@0 20 {
cannam@2 21 m_magHistory = NULL;
cannam@2 22 m_phaseHistory = NULL;
cannam@2 23 m_phaseHistoryOld = NULL;
cannam@14 24 m_magPeaks = NULL;
cannam@0 25
cannam@0 26 initialise( Config );
cannam@0 27 }
cannam@0 28
cannam@0 29 DetectionFunction::~DetectionFunction()
cannam@0 30 {
cannam@0 31 deInitialise();
cannam@0 32 }
cannam@0 33
cannam@0 34
cannam@0 35 void DetectionFunction::initialise( DFConfig Config )
cannam@0 36 {
cannam@0 37 m_dataLength = Config.frameLength;
cannam@0 38 m_halfLength = m_dataLength/2;
cannam@14 39
cannam@0 40 m_DFType = Config.DFType;
cannam@13 41 m_stepSize = Config.stepSize;
cannam@0 42
cannam@14 43 m_whiten = Config.adaptiveWhitening;
cannam@14 44 m_whitenRelaxCoeff = Config.whiteningRelaxCoeff;
cannam@14 45 m_whitenFloor = Config.whiteningFloor;
cannam@14 46 if (m_whitenRelaxCoeff < 0) m_whitenRelaxCoeff = 0.9997;
cannam@14 47 if (m_whitenFloor < 0) m_whitenFloor = 0.01;
cannam@14 48
cannam@2 49 m_magHistory = new double[ m_halfLength ];
cannam@2 50 memset(m_magHistory,0, m_halfLength*sizeof(double));
cannam@0 51
cannam@2 52 m_phaseHistory = new double[ m_halfLength ];
cannam@2 53 memset(m_phaseHistory,0, m_halfLength*sizeof(double));
cannam@0 54
cannam@2 55 m_phaseHistoryOld = new double[ m_halfLength ];
cannam@2 56 memset(m_phaseHistoryOld,0, m_halfLength*sizeof(double));
cannam@0 57
cannam@14 58 m_magPeaks = new double[ m_halfLength ];
cannam@14 59 memset(m_magPeaks,0, m_halfLength*sizeof(double));
cannam@14 60
cannam@0 61 m_phaseVoc = new PhaseVocoder;
cannam@0 62
cannam@0 63 m_DFWindowedFrame = new double[ m_dataLength ];
cannam@0 64 m_magnitude = new double[ m_halfLength ];
cannam@0 65 m_thetaAngle = new double[ m_halfLength ];
cannam@0 66
cannam@0 67 m_window = new Window<double>(HanningWindow, m_dataLength);
cannam@0 68 }
cannam@0 69
cannam@0 70 void DetectionFunction::deInitialise()
cannam@0 71 {
cannam@2 72 delete [] m_magHistory ;
cannam@2 73 delete [] m_phaseHistory ;
cannam@2 74 delete [] m_phaseHistoryOld ;
cannam@14 75 delete [] m_magPeaks ;
cannam@0 76
cannam@0 77 delete m_phaseVoc;
cannam@0 78
cannam@0 79 delete [] m_DFWindowedFrame;
cannam@0 80 delete [] m_magnitude;
cannam@0 81 delete [] m_thetaAngle;
cannam@0 82
cannam@0 83 delete m_window;
cannam@0 84 }
cannam@0 85
cannam@55 86 double DetectionFunction::process( const double *TDomain )
cannam@0 87 {
cannam@0 88 m_window->cut( TDomain, m_DFWindowedFrame );
cannam@55 89
cannam@55 90 // Our own FFT implementation supports power-of-two sizes only.
cannam@55 91 // If we have to use this implementation (as opposed to the
cannam@55 92 // version of process() below that operates on frequency domain
cannam@55 93 // data directly), we will have to use the next smallest power of
cannam@55 94 // two from the block size. Results may vary accordingly!
cannam@55 95
cannam@55 96 int actualLength = MathUtilities::previousPowerOfTwo(m_dataLength);
cannam@55 97
cannam@55 98 if (actualLength != m_dataLength) {
cannam@55 99 // Pre-fill mag and phase vectors with zero, as the FFT output
cannam@55 100 // will not fill the arrays
cannam@55 101 for (int i = actualLength/2; i < m_dataLength/2; ++i) {
cannam@55 102 m_magnitude[i] = 0;
cannam@55 103 m_thetaAngle[0] = 0;
cannam@55 104 }
cannam@55 105 }
cannam@55 106
cannam@55 107 m_phaseVoc->process(actualLength, m_DFWindowedFrame, m_magnitude, m_thetaAngle);
cannam@0 108
cannam@14 109 if (m_whiten) whiten();
cannam@14 110
cannam@2 111 return runDF();
cannam@2 112 }
cannam@2 113
cannam@55 114 double DetectionFunction::process( const double *magnitudes, const double *phases )
cannam@2 115 {
cannam@2 116 for (size_t i = 0; i < m_halfLength; ++i) {
cannam@2 117 m_magnitude[i] = magnitudes[i];
cannam@2 118 m_thetaAngle[i] = phases[i];
cannam@2 119 }
cannam@2 120
cannam@14 121 if (m_whiten) whiten();
cannam@14 122
cannam@2 123 return runDF();
cannam@2 124 }
cannam@2 125
cannam@14 126 void DetectionFunction::whiten()
cannam@14 127 {
cannam@14 128 for (unsigned int i = 0; i < m_halfLength; ++i) {
cannam@14 129 double m = m_magnitude[i];
cannam@14 130 if (m < m_magPeaks[i]) {
cannam@14 131 m = m + (m_magPeaks[i] - m) * m_whitenRelaxCoeff;
cannam@14 132 }
cannam@14 133 if (m < m_whitenFloor) m = m_whitenFloor;
cannam@14 134 m_magPeaks[i] = m;
cannam@14 135 m_magnitude[i] /= m;
cannam@14 136 }
cannam@14 137 }
cannam@14 138
cannam@2 139 double DetectionFunction::runDF()
cannam@2 140 {
cannam@2 141 double retVal = 0;
cannam@2 142
cannam@0 143 switch( m_DFType )
cannam@0 144 {
cannam@0 145 case DF_HFC:
cannam@0 146 retVal = HFC( m_halfLength, m_magnitude);
cannam@0 147 break;
cannam@0 148
cannam@13 149 case DF_SPECDIFF:
cannam@0 150 retVal = specDiff( m_halfLength, m_magnitude);
cannam@0 151 break;
cannam@0 152
cannam@0 153 case DF_PHASEDEV:
cannam@14 154 retVal = phaseDev( m_halfLength, m_thetaAngle);
cannam@0 155 break;
cannam@0 156
cannam@0 157 case DF_COMPLEXSD:
cannam@0 158 retVal = complexSD( m_halfLength, m_magnitude, m_thetaAngle);
cannam@0 159 break;
cannam@12 160
cannam@12 161 case DF_BROADBAND:
cannam@14 162 retVal = broadband( m_halfLength, m_magnitude);
cannam@14 163 break;
cannam@0 164 }
cannam@0 165
cannam@0 166 return retVal;
cannam@0 167 }
cannam@0 168
cannam@0 169 double DetectionFunction::HFC(unsigned int length, double *src)
cannam@0 170 {
cannam@0 171 unsigned int i;
cannam@0 172 double val = 0;
cannam@0 173
cannam@0 174 for( i = 0; i < length; i++)
cannam@0 175 {
cannam@0 176 val += src[ i ] * ( i + 1);
cannam@0 177 }
cannam@0 178 return val;
cannam@0 179 }
cannam@0 180
cannam@0 181 double DetectionFunction::specDiff(unsigned int length, double *src)
cannam@0 182 {
cannam@0 183 unsigned int i;
cannam@0 184 double val = 0.0;
cannam@0 185 double temp = 0.0;
cannam@0 186 double diff = 0.0;
cannam@0 187
cannam@0 188 for( i = 0; i < length; i++)
cannam@0 189 {
cannam@2 190 temp = fabs( (src[ i ] * src[ i ]) - (m_magHistory[ i ] * m_magHistory[ i ]) );
cannam@0 191
cannam@0 192 diff= sqrt(temp);
cannam@0 193
cannam@13 194 // (See note in phaseDev below.)
cannam@13 195
cannam@13 196 val += diff;
cannam@0 197
cannam@2 198 m_magHistory[ i ] = src[ i ];
cannam@0 199 }
cannam@0 200
cannam@0 201 return val;
cannam@0 202 }
cannam@0 203
cannam@0 204
cannam@14 205 double DetectionFunction::phaseDev(unsigned int length, double *srcPhase)
cannam@0 206 {
cannam@0 207 unsigned int i;
cannam@0 208 double tmpPhase = 0;
cannam@0 209 double tmpVal = 0;
cannam@0 210 double val = 0;
cannam@0 211
cannam@0 212 double dev = 0;
cannam@0 213
cannam@0 214 for( i = 0; i < length; i++)
cannam@0 215 {
cannam@2 216 tmpPhase = (srcPhase[ i ]- 2*m_phaseHistory[ i ]+m_phaseHistoryOld[ i ]);
cannam@0 217 dev = MathUtilities::princarg( tmpPhase );
cannam@13 218
cannam@13 219 // A previous version of this code only counted the value here
cannam@13 220 // if the magnitude exceeded 0.1. My impression is that
cannam@13 221 // doesn't greatly improve the results for "loud" music (so
cannam@13 222 // long as the peak picker is reasonably sophisticated), but
cannam@13 223 // does significantly damage its ability to work with quieter
cannam@13 224 // music, so I'm removing it and counting the result always.
cannam@13 225 // Same goes for the spectral difference measure above.
cannam@0 226
cannam@13 227 tmpVal = fabs(dev);
cannam@13 228 val += tmpVal ;
cannam@0 229
cannam@2 230 m_phaseHistoryOld[ i ] = m_phaseHistory[ i ] ;
cannam@2 231 m_phaseHistory[ i ] = srcPhase[ i ];
cannam@0 232 }
cannam@0 233
cannam@0 234
cannam@0 235 return val;
cannam@0 236 }
cannam@0 237
cannam@0 238
cannam@0 239 double DetectionFunction::complexSD(unsigned int length, double *srcMagnitude, double *srcPhase)
cannam@0 240 {
cannam@0 241 unsigned int i;
cannam@0 242 double val = 0;
cannam@0 243 double tmpPhase = 0;
cannam@0 244 double tmpReal = 0;
cannam@0 245 double tmpImag = 0;
cannam@0 246
cannam@0 247 double dev = 0;
cannam@0 248 ComplexData meas = ComplexData( 0, 0 );
cannam@2 249 ComplexData j = ComplexData( 0, 1 );
cannam@0 250
cannam@0 251 for( i = 0; i < length; i++)
cannam@0 252 {
cannam@2 253 tmpPhase = (srcPhase[ i ]- 2*m_phaseHistory[ i ]+m_phaseHistoryOld[ i ]);
cannam@0 254 dev= MathUtilities::princarg( tmpPhase );
cannam@0 255
cannam@2 256 meas = m_magHistory[i] - ( srcMagnitude[ i ] * exp( j * dev) );
cannam@0 257
cannam@0 258 tmpReal = real( meas );
cannam@0 259 tmpImag = imag( meas );
cannam@0 260
cannam@0 261 val += sqrt( (tmpReal * tmpReal) + (tmpImag * tmpImag) );
cannam@0 262
cannam@2 263 m_phaseHistoryOld[ i ] = m_phaseHistory[ i ] ;
cannam@2 264 m_phaseHistory[ i ] = srcPhase[ i ];
cannam@2 265 m_magHistory[ i ] = srcMagnitude[ i ];
cannam@0 266 }
cannam@0 267
cannam@0 268 return val;
cannam@0 269 }
cannam@0 270
cannam@14 271 double DetectionFunction::broadband(unsigned int length, double *src)
cannam@12 272 {
cannam@12 273 double val = 0;
cannam@12 274 for (unsigned int i = 0; i < length; ++i) {
cannam@14 275 double sqrmag = src[i] * src[i];
cannam@12 276 if (m_magHistory[i] > 0.0) {
cannam@12 277 double diff = 10.0 * log10(sqrmag / m_magHistory[i]);
cannam@12 278 if (diff > m_dbRise) val = val + 1;
cannam@12 279 }
cannam@12 280 m_magHistory[i] = sqrmag;
cannam@12 281 }
cannam@12 282 return val;
cannam@12 283 }
cannam@12 284
cannam@0 285 double* DetectionFunction::getSpectrumMagnitude()
cannam@0 286 {
cannam@0 287 return m_magnitude;
cannam@0 288 }
cannam@0 289