c@427
|
1 /* dtrti2.f -- translated by f2c (version 20061008).
|
c@427
|
2 You must link the resulting object file with libf2c:
|
c@427
|
3 on Microsoft Windows system, link with libf2c.lib;
|
c@427
|
4 on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
c@427
|
5 or, if you install libf2c.a in a standard place, with -lf2c -lm
|
c@427
|
6 -- in that order, at the end of the command line, as in
|
c@427
|
7 cc *.o -lf2c -lm
|
c@427
|
8 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
c@427
|
9
|
c@427
|
10 http://www.netlib.org/f2c/libf2c.zip
|
c@427
|
11 */
|
c@427
|
12
|
c@427
|
13 #include "f2c.h"
|
c@427
|
14 #include "blaswrap.h"
|
c@427
|
15
|
c@427
|
16 /* Table of constant values */
|
c@427
|
17
|
c@427
|
18 static integer c__1 = 1;
|
c@427
|
19
|
c@427
|
20 /* Subroutine */ int dtrti2_(char *uplo, char *diag, integer *n, doublereal *
|
c@427
|
21 a, integer *lda, integer *info)
|
c@427
|
22 {
|
c@427
|
23 /* System generated locals */
|
c@427
|
24 integer a_dim1, a_offset, i__1, i__2;
|
c@427
|
25
|
c@427
|
26 /* Local variables */
|
c@427
|
27 integer j;
|
c@427
|
28 doublereal ajj;
|
c@427
|
29 extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
|
c@427
|
30 integer *);
|
c@427
|
31 extern logical lsame_(char *, char *);
|
c@427
|
32 logical upper;
|
c@427
|
33 extern /* Subroutine */ int dtrmv_(char *, char *, char *, integer *,
|
c@427
|
34 doublereal *, integer *, doublereal *, integer *), xerbla_(char *, integer *);
|
c@427
|
35 logical nounit;
|
c@427
|
36
|
c@427
|
37
|
c@427
|
38 /* -- LAPACK routine (version 3.2) -- */
|
c@427
|
39 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
c@427
|
40 /* November 2006 */
|
c@427
|
41
|
c@427
|
42 /* .. Scalar Arguments .. */
|
c@427
|
43 /* .. */
|
c@427
|
44 /* .. Array Arguments .. */
|
c@427
|
45 /* .. */
|
c@427
|
46
|
c@427
|
47 /* Purpose */
|
c@427
|
48 /* ======= */
|
c@427
|
49
|
c@427
|
50 /* DTRTI2 computes the inverse of a real upper or lower triangular */
|
c@427
|
51 /* matrix. */
|
c@427
|
52
|
c@427
|
53 /* This is the Level 2 BLAS version of the algorithm. */
|
c@427
|
54
|
c@427
|
55 /* Arguments */
|
c@427
|
56 /* ========= */
|
c@427
|
57
|
c@427
|
58 /* UPLO (input) CHARACTER*1 */
|
c@427
|
59 /* Specifies whether the matrix A is upper or lower triangular. */
|
c@427
|
60 /* = 'U': Upper triangular */
|
c@427
|
61 /* = 'L': Lower triangular */
|
c@427
|
62
|
c@427
|
63 /* DIAG (input) CHARACTER*1 */
|
c@427
|
64 /* Specifies whether or not the matrix A is unit triangular. */
|
c@427
|
65 /* = 'N': Non-unit triangular */
|
c@427
|
66 /* = 'U': Unit triangular */
|
c@427
|
67
|
c@427
|
68 /* N (input) INTEGER */
|
c@427
|
69 /* The order of the matrix A. N >= 0. */
|
c@427
|
70
|
c@427
|
71 /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
|
c@427
|
72 /* On entry, the triangular matrix A. If UPLO = 'U', the */
|
c@427
|
73 /* leading n by n upper triangular part of the array A contains */
|
c@427
|
74 /* the upper triangular matrix, and the strictly lower */
|
c@427
|
75 /* triangular part of A is not referenced. If UPLO = 'L', the */
|
c@427
|
76 /* leading n by n lower triangular part of the array A contains */
|
c@427
|
77 /* the lower triangular matrix, and the strictly upper */
|
c@427
|
78 /* triangular part of A is not referenced. If DIAG = 'U', the */
|
c@427
|
79 /* diagonal elements of A are also not referenced and are */
|
c@427
|
80 /* assumed to be 1. */
|
c@427
|
81
|
c@427
|
82 /* On exit, the (triangular) inverse of the original matrix, in */
|
c@427
|
83 /* the same storage format. */
|
c@427
|
84
|
c@427
|
85 /* LDA (input) INTEGER */
|
c@427
|
86 /* The leading dimension of the array A. LDA >= max(1,N). */
|
c@427
|
87
|
c@427
|
88 /* INFO (output) INTEGER */
|
c@427
|
89 /* = 0: successful exit */
|
c@427
|
90 /* < 0: if INFO = -k, the k-th argument had an illegal value */
|
c@427
|
91
|
c@427
|
92 /* ===================================================================== */
|
c@427
|
93
|
c@427
|
94 /* .. Parameters .. */
|
c@427
|
95 /* .. */
|
c@427
|
96 /* .. Local Scalars .. */
|
c@427
|
97 /* .. */
|
c@427
|
98 /* .. External Functions .. */
|
c@427
|
99 /* .. */
|
c@427
|
100 /* .. External Subroutines .. */
|
c@427
|
101 /* .. */
|
c@427
|
102 /* .. Intrinsic Functions .. */
|
c@427
|
103 /* .. */
|
c@427
|
104 /* .. Executable Statements .. */
|
c@427
|
105
|
c@427
|
106 /* Test the input parameters. */
|
c@427
|
107
|
c@427
|
108 /* Parameter adjustments */
|
c@427
|
109 a_dim1 = *lda;
|
c@427
|
110 a_offset = 1 + a_dim1;
|
c@427
|
111 a -= a_offset;
|
c@427
|
112
|
c@427
|
113 /* Function Body */
|
c@427
|
114 *info = 0;
|
c@427
|
115 upper = lsame_(uplo, "U");
|
c@427
|
116 nounit = lsame_(diag, "N");
|
c@427
|
117 if (! upper && ! lsame_(uplo, "L")) {
|
c@427
|
118 *info = -1;
|
c@427
|
119 } else if (! nounit && ! lsame_(diag, "U")) {
|
c@427
|
120 *info = -2;
|
c@427
|
121 } else if (*n < 0) {
|
c@427
|
122 *info = -3;
|
c@427
|
123 } else if (*lda < max(1,*n)) {
|
c@427
|
124 *info = -5;
|
c@427
|
125 }
|
c@427
|
126 if (*info != 0) {
|
c@427
|
127 i__1 = -(*info);
|
c@427
|
128 xerbla_("DTRTI2", &i__1);
|
c@427
|
129 return 0;
|
c@427
|
130 }
|
c@427
|
131
|
c@427
|
132 if (upper) {
|
c@427
|
133
|
c@427
|
134 /* Compute inverse of upper triangular matrix. */
|
c@427
|
135
|
c@427
|
136 i__1 = *n;
|
c@427
|
137 for (j = 1; j <= i__1; ++j) {
|
c@427
|
138 if (nounit) {
|
c@427
|
139 a[j + j * a_dim1] = 1. / a[j + j * a_dim1];
|
c@427
|
140 ajj = -a[j + j * a_dim1];
|
c@427
|
141 } else {
|
c@427
|
142 ajj = -1.;
|
c@427
|
143 }
|
c@427
|
144
|
c@427
|
145 /* Compute elements 1:j-1 of j-th column. */
|
c@427
|
146
|
c@427
|
147 i__2 = j - 1;
|
c@427
|
148 dtrmv_("Upper", "No transpose", diag, &i__2, &a[a_offset], lda, &
|
c@427
|
149 a[j * a_dim1 + 1], &c__1);
|
c@427
|
150 i__2 = j - 1;
|
c@427
|
151 dscal_(&i__2, &ajj, &a[j * a_dim1 + 1], &c__1);
|
c@427
|
152 /* L10: */
|
c@427
|
153 }
|
c@427
|
154 } else {
|
c@427
|
155
|
c@427
|
156 /* Compute inverse of lower triangular matrix. */
|
c@427
|
157
|
c@427
|
158 for (j = *n; j >= 1; --j) {
|
c@427
|
159 if (nounit) {
|
c@427
|
160 a[j + j * a_dim1] = 1. / a[j + j * a_dim1];
|
c@427
|
161 ajj = -a[j + j * a_dim1];
|
c@427
|
162 } else {
|
c@427
|
163 ajj = -1.;
|
c@427
|
164 }
|
c@427
|
165 if (j < *n) {
|
c@427
|
166
|
c@427
|
167 /* Compute elements j+1:n of j-th column. */
|
c@427
|
168
|
c@427
|
169 i__1 = *n - j;
|
c@427
|
170 dtrmv_("Lower", "No transpose", diag, &i__1, &a[j + 1 + (j +
|
c@427
|
171 1) * a_dim1], lda, &a[j + 1 + j * a_dim1], &c__1);
|
c@427
|
172 i__1 = *n - j;
|
c@427
|
173 dscal_(&i__1, &ajj, &a[j + 1 + j * a_dim1], &c__1);
|
c@427
|
174 }
|
c@427
|
175 /* L20: */
|
c@427
|
176 }
|
c@427
|
177 }
|
c@427
|
178
|
c@427
|
179 return 0;
|
c@427
|
180
|
c@427
|
181 /* End of DTRTI2 */
|
c@427
|
182
|
c@427
|
183 } /* dtrti2_ */
|