Mercurial > hg > pyin
view PYIN.cpp @ 5:af9d62ddab4c
improved note tracking
author | matthiasm |
---|---|
date | Wed, 27 Nov 2013 17:22:39 +0000 |
parents | 3dcef83df62a |
children | a43ed5ae6e78 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* This file is Copyright (c) 2012 Chris Cannam Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "PYIN.h" #include "MonoNote.h" #include "MonoPitch.h" #include "vamp-sdk/FFT.h" #include <vector> #include <algorithm> #include <cstdio> #include <cmath> #include <complex> using std::string; using std::vector; using Vamp::RealTime; PYIN::PYIN(float inputSampleRate) : Plugin(inputSampleRate), m_channels(0), m_stepSize(256), m_blockSize(2048), m_fmin(40), m_fmax(700), m_yin(2048, inputSampleRate, 0.0), m_oF0Candidates(0), m_oF0Probs(0), m_oVoicedProb(0), m_oCandidateSalience(0), m_oSmoothedPitchTrack(0), m_oNotes(0), m_threshDistr(2.0f), m_outputUnvoiced(0), m_pitchProb(0), m_timestamp(0) { } PYIN::~PYIN() { } string PYIN::getIdentifier() const { return "pyin"; } string PYIN::getName() const { return "pYin"; } string PYIN::getDescription() const { return "Monophonic pitch and note tracking based on a probabilistic Yin extension."; } string PYIN::getMaker() const { return "Matthias Mauch"; } int PYIN::getPluginVersion() const { // Increment this each time you release a version that behaves // differently from the previous one return 1; } string PYIN::getCopyright() const { return "GPL"; } PYIN::InputDomain PYIN::getInputDomain() const { return TimeDomain; } size_t PYIN::getPreferredBlockSize() const { return 2048; } size_t PYIN::getPreferredStepSize() const { return 256; } size_t PYIN::getMinChannelCount() const { return 1; } size_t PYIN::getMaxChannelCount() const { return 1; } PYIN::ParameterList PYIN::getParameterDescriptors() const { ParameterList list; ParameterDescriptor d; d.identifier = "threshdistr"; d.name = "Yin threshold distribution"; d.description = "."; d.unit = ""; d.minValue = 0.0f; d.maxValue = 7.0f; d.defaultValue = 2.0f; d.isQuantized = true; d.quantizeStep = 1.0f; d.valueNames.push_back("Uniform"); d.valueNames.push_back("Beta (mean 0.10)"); d.valueNames.push_back("Beta (mean 0.15)"); d.valueNames.push_back("Beta (mean 0.20)"); d.valueNames.push_back("Beta (mean 0.30)"); d.valueNames.push_back("Single Value 0.10"); d.valueNames.push_back("Single Value 0.15"); d.valueNames.push_back("Single Value 0.20"); list.push_back(d); d.identifier = "outputunvoiced"; d.valueNames.clear(); d.name = "Output estimates classified as unvoiced?"; d.description = "."; d.unit = ""; d.minValue = 0.0f; d.maxValue = 2.0f; d.defaultValue = 2.0f; d.isQuantized = true; d.quantizeStep = 1.0f; d.valueNames.push_back("No"); d.valueNames.push_back("Yes"); d.valueNames.push_back("Yes, as negative frequencies"); list.push_back(d); return list; } float PYIN::getParameter(string identifier) const { if (identifier == "threshdistr") { return m_threshDistr; } if (identifier == "outputunvoiced") { return m_outputUnvoiced; } return 0.f; } void PYIN::setParameter(string identifier, float value) { if (identifier == "threshdistr") { m_threshDistr = value; } if (identifier == "outputunvoiced") { m_outputUnvoiced = value; } } PYIN::ProgramList PYIN::getPrograms() const { ProgramList list; return list; } string PYIN::getCurrentProgram() const { return ""; // no programs } void PYIN::selectProgram(string name) { } PYIN::OutputList PYIN::getOutputDescriptors() const { OutputList outputs; OutputDescriptor d; int outputNumber = 0; d.identifier = "f0candidates"; d.name = "F0 Candidates"; d.description = "Estimated fundamental frequency candidates."; d.unit = "Hz"; d.hasFixedBinCount = false; // d.binCount = 1; d.hasKnownExtents = true; d.minValue = m_fmin; d.maxValue = 500; d.isQuantized = false; d.sampleType = OutputDescriptor::FixedSampleRate; d.sampleRate = (m_inputSampleRate / m_stepSize); d.hasDuration = false; outputs.push_back(d); m_oF0Candidates = outputNumber++; d.identifier = "f0probs"; d.name = "Candidate Probabilities"; d.description = "Probabilities of estimated fundamental frequency candidates."; d.unit = ""; d.hasFixedBinCount = false; // d.binCount = 1; d.hasKnownExtents = true; d.minValue = 0; d.maxValue = 1; d.isQuantized = false; d.sampleType = OutputDescriptor::FixedSampleRate; d.sampleRate = (m_inputSampleRate / m_stepSize); d.hasDuration = false; outputs.push_back(d); m_oF0Probs = outputNumber++; d.identifier = "voicedprob"; d.name = "Voiced Probability"; d.description = "Probability that the signal is voiced according to Probabilistic Yin."; d.unit = ""; d.hasFixedBinCount = true; d.binCount = 1; d.hasKnownExtents = true; d.minValue = 0; d.maxValue = 1; d.isQuantized = false; d.sampleType = OutputDescriptor::FixedSampleRate; d.sampleRate = (m_inputSampleRate / m_stepSize); d.hasDuration = false; outputs.push_back(d); m_oVoicedProb = outputNumber++; d.identifier = "candidatesalience"; d.name = "Candidate Salience"; d.description = "Candidate Salience"; d.hasFixedBinCount = true; d.binCount = m_blockSize / 2; d.hasKnownExtents = true; d.minValue = 0; d.maxValue = 1; d.isQuantized = false; d.sampleType = OutputDescriptor::FixedSampleRate; d.sampleRate = (m_inputSampleRate / m_stepSize); d.hasDuration = false; outputs.push_back(d); m_oCandidateSalience = outputNumber++; d.identifier = "smoothedpitchtrack"; d.name = "Smoothed Pitch Track"; d.description = "."; d.unit = "Hz"; d.hasFixedBinCount = true; d.binCount = 1; d.hasKnownExtents = false; // d.minValue = 0; // d.maxValue = 1; d.isQuantized = false; d.sampleType = OutputDescriptor::FixedSampleRate; d.sampleRate = (m_inputSampleRate / m_stepSize); d.hasDuration = false; outputs.push_back(d); m_oSmoothedPitchTrack = outputNumber++; d.identifier = "notes"; d.name = "Notes"; d.description = "Derived fixed-pitch note frequencies"; // d.unit = "MIDI unit"; d.unit = "Hz"; d.hasFixedBinCount = true; d.binCount = 1; d.hasKnownExtents = false; d.isQuantized = false; d.sampleType = OutputDescriptor::VariableSampleRate; d.sampleRate = (m_inputSampleRate / m_stepSize); d.hasDuration = true; outputs.push_back(d); m_oNotes = outputNumber++; return outputs; } bool PYIN::initialise(size_t channels, size_t stepSize, size_t blockSize) { if (channels < getMinChannelCount() || channels > getMaxChannelCount()) return false; std::cerr << "PYIN::initialise: channels = " << channels << ", stepSize = " << stepSize << ", blockSize = " << blockSize << std::endl; m_channels = channels; m_stepSize = stepSize; m_blockSize = blockSize; reset(); return true; } void PYIN::reset() { m_yin.setThresholdDistr(m_threshDistr); m_yin.setFrameSize(m_blockSize); m_pitchProb.clear(); m_timestamp.clear(); std::cerr << "PYIN::reset" << ", blockSize = " << m_blockSize << std::endl; } PYIN::FeatureSet PYIN::process(const float *const *inputBuffers, RealTime timestamp) { timestamp = timestamp + Vamp::RealTime::frame2RealTime(m_blockSize/4, lrintf(m_inputSampleRate)); FeatureSet fs; double *dInputBuffers = new double[m_blockSize]; for (size_t i = 0; i < m_blockSize; ++i) dInputBuffers[i] = inputBuffers[0][i]; Yin::YinOutput yo = m_yin.processProbabilisticYin(dInputBuffers); Feature f; f.hasTimestamp = true; f.timestamp = timestamp; for (size_t i = 0; i < yo.freqProb.size(); ++i) { f.values.push_back(yo.freqProb[i].first); } fs[m_oF0Candidates].push_back(f); f.values.clear(); float voicedProb = 0; for (size_t i = 0; i < yo.freqProb.size(); ++i) { f.values.push_back(yo.freqProb[i].second); voicedProb += yo.freqProb[i].second; } fs[m_oF0Probs].push_back(f); f.values.clear(); f.values.push_back(voicedProb); fs[m_oVoicedProb].push_back(f); f.values.clear(); float salienceSum = 0; for (size_t iBin = 0; iBin < yo.salience.size(); ++iBin) { f.values.push_back(yo.salience[iBin]); salienceSum += yo.salience[iBin]; } fs[m_oCandidateSalience].push_back(f); delete [] dInputBuffers; vector<pair<double, double> > tempPitchProb; for (size_t iCandidate = 0; iCandidate < yo.freqProb.size(); ++iCandidate) { double tempPitch = 12 * std::log(yo.freqProb[iCandidate].first/440)/std::log(2.) + 69; tempPitchProb.push_back(pair<double, double> (tempPitch, yo.freqProb[iCandidate].second)); } m_pitchProb.push_back(tempPitchProb); m_timestamp.push_back(timestamp); return fs; } PYIN::FeatureSet PYIN::getRemainingFeatures() { FeatureSet fs; Feature f; f.hasTimestamp = true; f.hasDuration = false; // MONO-PITCH STUFF MonoPitch mp; std::cerr << "before viterbi" << std::endl; vector<float> mpOut = mp.process(m_pitchProb); // std::cerr << "after viterbi " << mpOut.size() << " "<< m_timestamp.size() << std::endl; for (size_t iFrame = 0; iFrame < mpOut.size(); ++iFrame) { if (mpOut[iFrame] < 0 && (m_outputUnvoiced==0)) continue; f.timestamp = m_timestamp[iFrame]; f.values.clear(); if (m_outputUnvoiced == 1) { f.values.push_back(abs(mpOut[iFrame])); } else { f.values.push_back(mpOut[iFrame]); } fs[m_oSmoothedPitchTrack].push_back(f); } // MONO-NOTE STUFF MonoNote mn; std::vector<std::vector<std::pair<double, double> > > smoothedPitch; for (size_t iFrame = 0; iFrame < mpOut.size(); ++iFrame) { std::vector<std::pair<double, double> > temp; if (mpOut[iFrame] > 0) { double tempPitch = 12 * std::log(mpOut[iFrame]/440)/std::log(2.) + 69; temp.push_back(std::pair<double,double>(tempPitch, .9)); } smoothedPitch.push_back(temp); } // vector<MonoNote::FrameOutput> mnOut = mn.process(m_pitchProb); vector<MonoNote::FrameOutput> mnOut = mn.process(smoothedPitch); // for (size_t iFrame = 0; iFrame < mnOut.size(); ++iFrame) // { // std::cerr << mnOut[iFrame].pitch << std::endl; // } f.hasTimestamp = true; f.hasDuration = true; f.values.clear(); f.values.push_back(0); Feature fNoteFreqTrack; fNoteFreqTrack.hasTimestamp = true; fNoteFreqTrack.hasDuration = false; int oldState = -1; int onsetFrame = 0; int framesInNote = 0; double pitchSum = 0; // make notes bool isOpen = false; for (size_t iFrame = 0; iFrame < mnOut.size(); ++iFrame) { if (std::pow(2,(mnOut[onsetFrame].pitch - 69) / 12) * 440 >= m_fmin && mnOut[iFrame].noteState != 2 && oldState == 2 || iFrame == mnOut.size()-1 && isOpen) { vector<double> notePitchTrack; for (size_t i = onsetFrame; i <= iFrame; ++i) { fNoteFreqTrack.timestamp = m_timestamp[i]; if (smoothedPitch[i].size() > 0) { notePitchTrack.push_back(smoothedPitch[i][0].first); } } // closing old note size_t notePitchTrackSize = notePitchTrack.size(); if (notePitchTrackSize > 6) { f.duration = m_timestamp[iFrame]-m_timestamp[onsetFrame]; std::sort(notePitchTrack.begin(), notePitchTrack.end()); float tempPitch = notePitchTrack[notePitchTrackSize/2]; // median f.values[0] = std::pow(2,(tempPitch - 69) / 12) * 440; // convert back to Hz (Vamp hosts prefer that) fs[m_oNotes].push_back(f); } isOpen = false; } if (mnOut[iFrame].noteState == 1 && oldState != 1) { // open note onsetFrame = iFrame; f.timestamp = m_timestamp[iFrame]; pitchSum = 0; framesInNote = 0; isOpen = true; } oldState = mnOut[iFrame].noteState; } return fs; }